Unit 2-1.1 Polynomials

Polynomial:

An expression of the form:
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots \ldots a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
with $a_{0}, \ldots . a_{n}$ constants and $a_{n} \neq 0$
is called a polynomial of degree n
(the highest power of x is the degree)
Division - some terms:
Divisor - what you are dividing by
Dividend - the number you are dividing into
Quotient - how many times the divisor goes into the dividend
Remainder - What is left over.

Division of polynomials

- Nested or synthetic division

Dividing $\mathrm{f}(\mathrm{x})$ by $\mathrm{x}-\mathrm{h}$
Note: the divisor MUST be in the form x - h

Example:

Find the quotient and remainder when $\mathrm{x}^{3}+6 \mathrm{x}^{2}+3 \mathrm{x}-15$ is divided by $\mathrm{x}-3$

Follow the working opposite.
The quotient is $\mathbf{x}^{2}+\mathbf{9 x}+\mathbf{3 0}$ and the remainder is 75

It should also be noted that the remainder when the divisor is $x-3$ is $f(3)$

To illustrate this $f(3)=3^{3}+6(3)^{2}+3(3)-15$ $=27+54+9-15=75$

If we divided the quadratic $f(x)$ by $x-h$ then the remainder would be $f(h)$
Quotient r. Remainder
Divisor Dividend

Example of synthetic (nested) division:

Find the quotient and remainder when $\mathrm{x}^{3}+6 \mathrm{x}^{2}+3 \mathrm{x}-15$ is divided by $\mathrm{x}-3$
Write down the coefficients of the polynomial

- taking care to put a 0 where a power of x is missing

The shaded row and column are used there only to refer to the table for explanation.
Step 1. Put the contents of A1 straight down to A3
Step 2. Multiply A3 by the divisor and put result in B2
Step 3. Add B1 to B2 and put result in B3
Step 4. Multiply B3 by the divisor and put result in C2
Step 5. Add C1 to C2 and put result into C3
Step 6. Multiply C3 by divisor and put result into D2
Step 7. Add D1 and D2 and put result into D3
A3, B3, C3 are the coefficients of the quotient and D3 is the remainder.

Example:

Find the quotient and remainder when $x^{3}+6 x^{2}+3 x-15$ is divided by $x+3$

Note we must make $\mathrm{x}+3$ into $\mathbf{x}-\mathbf{(- 3)}$
The quotient is $\mathbf{x}^{2}+3 x-6$ and the remainder is - $\mathbf{3}$

Example:

Find the quotient and remainder when
$2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}+3$ is divided by $2 \mathrm{x}+1$
Again we have to arrange the divisor into the form $\mathbf{x}-\mathbf{h}$
$2 \mathrm{x}+1$ is the same as $2(\mathrm{x}+1 / 2)$ or $\mathbf{2 (x - (- 1 / 2))}$ ignore the factor of 2 at the moment - we will deal with that separately.

The quotient is $2 x^{2}+2 x-6$ and the remainder is 6

However we now have to divide the quotient by the factor of 2 that we took out.

So, the quotient becomes: $x^{2}+x-3$ and the remainder is 6
NB we do NOT divide the remainder as well.

Unit 2-1.1 Polynomials

The Remainder Theorem

When any polynomial $f(x)$ is divided by $x-h$ the remainder is given by $f(h)$

We can find $f(\mathrm{~h})$ directly to obtain the remainder, or we can use synthetic division.

This is a follow on from the Remainder Theorem and is perhaps more important and certainly useful.

Example: Find the factors of : $f(x)=2 x^{3}-11 x^{2}+17 x-6$ possible values for h are $\pm 1, \pm 2, \pm 3, \pm 6$,
Try h = 1
$f(h)=f(1)=2-11+17-6=2$ this is not zero so $(x-1)$ is not a factor
Try h = - 1
$f(h)=f(-1)=-2-11-17-6=-36$ this is not zero so $(x+1)$ is not a factor
Try $h=2$
$f(h)=f(2)=16-44+34-6=0$ so $(x-2)$ is a factor
Now obtain the quotient:

Quotient is: $2 x^{2}-7 x+3$ so polynomial is $(x-2)\left(2 x^{2}-7 x+3\right)$
Now factorise the quadratic factor using two brackets:

$$
2 x^{2}-7 x+3 \Rightarrow(2 x-3)(x-3)
$$

Hence: $f(x)=2 x^{3}-11 x^{2}+17 x-6 \quad$ factorises to $f(x)=(x-2)(2 x-3)(x-3)$

Example: solve the equation $\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2=0$
First find a factor - try possible values: $\pm 1, \pm 2$
$f(1)=1-2-1+2 \Rightarrow 0$ so $(x-1)$ is a factor
Use synthetic division to divide $\mathrm{f}(\mathrm{x})$ by the factor

hence: $\quad x^{3}-2 x^{2}-x+2=0$ factorises to $(x-1)\left(x^{2}-x-2\right)=0$
now factorise the quadratic part to get: $(x-1)(x-2)(x+1)=0$

Hence solutions of the equation: $x^{3}-2 x^{2}-x+2=0$
are: $x=1, x=2$ and $x=-1$

Unit 2-1.1 Polynomials

Finding approximate roots of the equation

$f(x)=0$
The previous method using the factor theorem will work providing the polynomial has factors
i.e. the roots are rational.

If they are not rational, the polynomial will not factorise and so we use a method to approximate the roots.

Solving by Iteration

Recall the graph of a function.
The roots are where $f(x)$ crosses the x axis.
To one side of the root $f(x)$ will be positive and on the other side of the root, $\mathrm{f}(\mathrm{x})$ will be negative.
So by finding two points such that $\mathrm{f}(\mathrm{x})$ is positive at one point and negative at the other, you know that the root must lie between the two points.
Take the middle point between these two points and depending upon whether this is positive or negative it will tell you on which side of the middle point the root lies.
Repeat this process until you have approached the root as close as the required accuracy.
If you want accuracy to 1 decimal place then you need to find the root with knowledge of the $2^{\text {nd }}$ decimal place.

This is a process known as iteration.

Example:

Show that $x^{3}-3 x+1=0$ has a real root between 1 and 2
Find an approximation for the root to 1 decimal place.

$$
\begin{aligned}
& f(1)=1-3+1=-1 \\
& f(2)=8-6+1=3
\end{aligned}
$$

$\therefore \mathrm{f}(\mathrm{x})$ crosses the x axis between $\mathrm{x}=1$ and $\mathrm{x}=2$, indicating a root α there.

Now home in on the root - you may use your calculator here - CAREFULLY!

$$
\begin{aligned}
& f(1.5) \approx-0.13 \text { So } 1.5<\alpha<2 \\
& \mathrm{f}(1.7) \approx+0.81 \text { So } 1.5<\alpha<1.7 \\
& \mathrm{f}(1.6) \approx+0.30 \text { So } 1.5<\alpha<21.6 \\
& \mathrm{f}(1.55) \approx+0.07 \text { So } 1.5<\alpha<1.55 \\
& \mathrm{f}(1.54) \approx+0.03 \text { So } 1.5<\alpha<1.54
\end{aligned}
$$

hence root is 1.5 correct to 1 decimal place

Unit 2-1.2 Quadratic Theory

Reminders:

$f(x)=a x^{2}+b x+c \quad a \neq 0$ is a quadratic function
$3 x^{2}+2 x-1$ is a quadratic expression
with $a=3, b=2$ and $c=-1$
$3 x^{2}+2 x-1=0$ is a quadratic equation
(this one can be solved by factors)
A quadratic equation with roots 2 and -3 is
$(x-2)(x+3)=0$ which multiplies out to $x^{2}+x-6=0$

Solving Quadratic Equations

We know the following methods for solving quadratic equations:

1. Graphically, where the graph crosses the x axis.
2. Factorise (put into 2 brackets)
3. Use the quadratic formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
4. Completing the square:

The Discriminant

If we look at the formula for the solution of quadratic equations

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

we note that $b^{2}-4 a c$ plays a fundamental role in determining the nature of the solutions.
we call $b^{2}-4 a c$ the Discriminant - because it discriminates between different types of solution.
if $b^{2}-4 a c>0 \Rightarrow$ two real and distinct roots
$b^{2}-4 a c=0 \quad \Rightarrow$ the roots are equal
$b^{2}-4 a c<0 \quad \Rightarrow$ there are no real roots.

Example:

> Solve $x^{2}-2 x-4=0$ by completing the square
> $(x-1)^{2}-1-4=0$
> $(x-1)^{2}-5=0$
> $(x-1)^{2}=5$
> $x=1 \pm \sqrt{5}$ hence $x=\mathbf{3 . 2 4}$ or - $\mathbf{1 . 2 4}$ (corr. to 2 d.p.)

Example: solve $3 x^{2}+4 x-5=0$ using the formula
Here we have $a=3, b=4$ and $c=-5$
Use: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
giving $\quad x=\frac{-4 \pm \sqrt{4^{2}-4(3)(-5)}}{2(3)}$
Hence: $x=\frac{-4 \pm \sqrt{16+60}}{6} \quad$ and $\quad x=\frac{-4 \pm \sqrt{76}}{6}$
so $\quad \mathbf{x}=\mathbf{0 . 7 9}$ or $\mathbf{- 2 . 1 2}$ (correct to 2 dec. pl)

Example:

For what value of p does the equation $x^{2}-2 x+p=0$ have equal roots.
$b^{2}-4 a c=4-4(1)(\mathrm{p})=4-4 \mathrm{p}$ for equal roots this must be zero
so $4-4 p=0$ hence $4=4 p$ and $p=1$

Example:

Find the range of values for m for which $5 x^{2}-3 m x+5=0$ has two real and distinct roots.
$b^{2}-4 a c=9 m^{2}-4(5)(5)=9 m^{2}-100$
For real and distinct roots: $9 \mathrm{~m}^{2}-100>0$ hence $9 \mathrm{~m}^{2}>100$

$$
m^{2}>\frac{100}{9} \quad m>+\frac{10}{3} \quad m<-\frac{10}{3}
$$

Example:

For what value of k does the graph $y=k x^{2}-3 k x+9$ touch the x-axis.
To touch the x axis, there must be equal roots so discriminant $=0$
$b^{2}-4 a c=9 k^{2}-4(\mathrm{k})(9)=9 \mathrm{k}^{2}-36 \mathrm{k}$
$9 k^{2}-36 k=0 \quad 9 k(k-4)=0 \quad$ so $\mathbf{k}=\mathbf{0}$ or $\mathbf{k}=4$

Unit 2-1.2 Quadratic Theory

Tangents to curves:

Example:

Find the value of c if the line $y=5 x+c$ is a tangent to the parabola $y=x^{2}+3 x+4$

See opposite for method:

The point of intersection is given by
equation ($\ldots \ldots .1$) with $\mathrm{c}=3$
So $x^{2}-2 x+1=0$ which factorises to
$(x-1)(x-1)=0$ hence $x=1$
when $x=1$ the tangent equation gives us $y=5 x+3 \Rightarrow y=8$

So point of intersection is $(1,8)$
To find the point of intersection of the line and parabola, solve the simultaneous equations:

$$
\begin{aligned}
& y=5 x+c \\
& y=x^{2}+3 x+4
\end{aligned}
$$

by substitution we get $5 x+c=x^{2}+3 x+4$
re-arranging gives: $\quad x^{2}-2 x+(4-c)=0$
For the line to be tangent, the line must intersect the curve at ONE point only
i.e. we want equal roots so $b^{2}-4 a c=0$ hence $4-4(1)(4-c)=0$
and so $4-16+4 \mathrm{c}=0 \quad-12+4 \mathrm{c}=0 \quad \mathrm{c}=3$
So the equation of the tangent will be $\mathbf{y}=5 \mathrm{x}+3$

Quadratic Inequalities

Solve this inequality $\quad x^{2}-6 x+5>0$
First sketch the curve $y=x^{2}-6 x+5$
Factorising gives us $y=(x-5)(x-1)$
So curve crosses the x -axis at: $\mathbf{x}=\mathbf{1}$ and $\mathbf{x}=\mathbf{5}$
The y -intercept is $\mathrm{y}=\mathbf{5}$ (when $\mathrm{x}=0$)
Minimum of the quadratic lies on the line $x=3$ (symmetry between $\mathrm{x}=1$ and $\mathrm{x}=5$)
The minimum value is $y=3^{2}-6(3)+5=9-$ $18+5=-4 \quad y=-4$

Sketch the curve, emphasise it where $\mathrm{y}>0$

Practical Example:

In the construction of an oil rig, the designers laid down these conditions for a rectangular helicopter landing pad.
(i) length to be 10 m more than breadth
(ii) area of pad to lie between $375 \mathrm{~m}^{2}$ and $600 \mathrm{~m}^{2}$

Calculate the limits for the breadth of the pad.
See method of working opposite:

Summary:

- Form an inequality
- Sketch the graph using '=’ signs
- Which part of graph is required
- Interpret the result

In summary with inequalities - sketch the curve and isolate the part that is relevant.

(above) sketch of the graph

$$
y=x^{2}-6 x+5
$$

(above) part of the graph where $\mathrm{y}>0$ i.e. $\mathrm{x}^{2}-6 \mathrm{x}+5>0$
hence the solution to the inequality $x^{2}-6 x+5>0 \quad$ is $\mathbf{x}<\mathbf{1}$ or $\mathbf{x}>5$

Let breadth of pad be x metres. So length of pad is $\mathrm{x}+10$ metres.
Area of pad is $x(x+10)$ and area has to be between $375 \mathrm{~m}^{2}$ and $600 \mathrm{~m}^{2}$
So we have the inequality: $375<\mathrm{x}(\mathrm{x}+10)<600$
Sketch the graph of $y=x(x+10)$
We know that this graph crosses the x axis at $\mathrm{x}=0$ and $\mathrm{x}=-10$
We need to find the values of x that correspond to $\mathrm{y}=600$ and $\mathrm{y}=375$ which will give us the limits for the breadth.
i.e. $y=375$ and $y=x(x+10) \Rightarrow y=x^{2}+10 x$

So solve $x^{2}+10 x-375=0$
$(x+25)(x-15)=0$
so $\mathrm{x}=-25$ or $\mathrm{x}=15$ (discard negative value)
Now we need to solve $y=600$ and $y=x^{2}+10 x$
i.e. solve $x^{2}+10 x-600=0$

$$
(x+30)(x-20)=0 \text { so } x=-30(\text { discard }) \text { or } x=20
$$

so at $x=20 \mathrm{~m}$ the area will be $600 \mathrm{~m}^{2}$ and at $\mathrm{x}=15$ area will be $375 \mathrm{~m}^{2}$
hence $\mathbf{1 5}$ metres < breadth < $\mathbf{2 0}$ metres.

Unit 2-2 Integration

Differential Equations

An equation involving a derivative such as
$\frac{d y}{d x}=8 x$
To solve this, we 'undo' the differentiation.
This takes us back to $\mathrm{y}=4 \mathrm{x}^{2}+$ constant,
which we write as $\mathrm{y}=4 \mathrm{x}^{2}+\mathrm{c}$
since any constant will differentiate to 0 .

General Solution

The general solution to $\frac{d y}{d x}=8 x$ is: $\mathrm{y}=4 \mathrm{x}^{2}+\mathrm{c}$
which represents a family of parabolas.

Particular Solution

To narrow it down to a particular parabola, we need more information (a boundary condition) such as when $\mathrm{x}=1, \mathrm{y}=6$.

General solution: $y=4 x^{2}+c$
But when $\mathrm{x}=1, \mathrm{y}=6$ so substitute to give: $6=4+\mathrm{c}$
So $\mathrm{c}=2$
On substitution this gives us a value for c .
Now we have the Particular Solution.

Example:

Find the particular solution of the differential equation $\frac{d y}{d x}=8 x-1$ given by $\mathrm{y}=5$ when $\mathrm{x}=1$

Example:

Kate and Mike make a simultaneous parachute jump.

Their velocity after x seconds is $v=5+10 \times \mathrm{m} / \mathrm{s}$ If they have fallen y metres then $v=\frac{d y}{d x}=5+10 x$
a) Find the distance y metres, they fall in x seconds, given $\mathrm{y}=0$ when $\mathrm{x}=0$
b) Calculate the distance they fall in 10 seconds.

Leibnitz' notation

Leibnitz invented a useful notation for antiderivatives:
$\int 8 x d x=4 x^{2}+c$
In general $\int f(x) d x=F(x)+c$ which means
effectively that $F^{\prime}(x)=f(x)$
The process of calculating the ant-derivative is known as Integration.

What we have done is to 'un-differentiate' and get back to the original function.
$y=4 x^{2}+c$ is called the anti-derivative of $8 x$

Particular Solution is: $y=4 x^{2}+2$

The general solution is: $y=4 x^{2}-x+c$
when $\quad y=5, x=1$ so $5=4(1)^{2}-(1)+c$ thus $c=2$
The particular solution is: $\quad \mathbf{y}=4 \mathbf{x}^{2}-\mathbf{x}+\mathbf{2}$

If: $\quad v=\frac{d y}{d x}=5+10 x$ then $\mathrm{y}=5 \mathrm{x}+5 \mathrm{x}^{2}+\mathrm{c} \quad$ (this is the general solution)
Since we know that $\mathrm{y}=0$ when $\mathrm{x}=0$ then $\mathrm{c}=0$ (substitute in general soln)

So the distance fallen in x seconds is given by:
the Particular solution: $\mathbf{y}=5 \mathbf{x}+5 \mathbf{x}^{2}$
Hence the distance fallen in 10 seconds is given by:

$$
y=5(10)+5(10)^{2}=550 \text { metres. }
$$

The anti-derivative is called the integral and c is the constant of integration. $F(x)$ is obtained from $f(x)$ by integrating with respect to x

Leibnitz notation is $\int f(x) d x$
The integral sign and the ' dx ' cannot be separated - they are a pair, like a set of brackets.

Unit 2-2 Integration

Some useful rules

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad n \neq-1 \\
& \int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x \\
& \int k f(x) d x=k \int f(x) d x
\end{aligned}
$$

INCREASE the index by 1 , then divide by the new index.
(note opposite of differentiation - which was multiply by the index, then DECREASE the index by 1)

Integral of a sum is the sum of the integrals.

A constant multiplier is carried along.

Examples:

See opposite
Treat each term separately and do not forget the constant of integration.

Examples:

$\int x^{3} d x=\frac{x^{4}}{4}+c$
$\int 6 x^{2} d x=\frac{6 x^{3}}{3}+c=2 x^{3}+c$
$\int x^{2}+x d x=\frac{x^{3}}{3}+\frac{x^{2}}{2}+c$
$\int 3 x^{2}-4 d x=\frac{3 x^{3}}{3}-4 x+c=x^{3}-4 x+c$

Working with Gradients

Given that the gradient of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is:
$\frac{d y}{d x}=3 x^{2}-6 x+1$ and the point $(3,4)$ lies on the curve, find the equation of the curve.
(See opposite for solution).

Working:

Integrate giving $y=\int 3 x^{2}-6 x+1 d x \quad$ so

$$
y=\frac{3 x^{3}}{3}-\frac{6 x^{2}}{2}+x+c=x^{3}-3 x^{2}+x+c
$$

Now substitute the condition for the particular solution $\mathrm{x}=3$ and $\mathrm{y}=4$ to obtain c
$4=3^{3}-3(3)^{2}+3+c \quad$ so $\quad 4=9-27+3+c \quad 4=-15+c \quad c=19$
Hence particular solution is : $y=x^{3}-3 x^{2}+x+19$

Fractional and Negative Indices

Note that in order to integrate, you must have the function in straight line index form.

Example:

$$
\begin{aligned}
& \text { Integrate: } \quad 2-\frac{1}{x^{2}} \Rightarrow \\
& \text { Integrate: } \quad x-\frac{1}{\sqrt{x}} \Rightarrow \\
& \text { Integrate: }\left(u-\frac{1}{u}\right)^{2} \Rightarrow
\end{aligned}
$$

$$
\begin{gathered}
\int 2-x^{-2} d x \Rightarrow 2 x-\frac{x^{-1}}{-1}+c \Rightarrow 2 x+\frac{1}{x}+c \\
\int x-x^{-\frac{1}{2}} d x \Rightarrow \frac{x^{2}}{2}-\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c \Rightarrow \frac{1}{2} x^{2}-2 \sqrt{x}+c \\
\int u^{2}-2+\frac{1}{u^{2}} d u \Rightarrow \int u^{2}-2+u^{-2} d u \Rightarrow \frac{u^{3}}{3}-2 u+\frac{u^{-1}}{-1}+c \\
\Rightarrow \frac{1}{3} u^{3}-2 u-\frac{1}{u}+c
\end{gathered}
$$

Integration	
Example: Integrate: $\frac{v^{3}+v}{v} \Rightarrow$	$\int \frac{v^{3}}{v}+\frac{v}{v} d v \Rightarrow \int v^{2}+1 d v \Rightarrow \frac{v^{3}}{3}+v+c \Rightarrow \frac{1}{3} v^{3}+v+c$
Applications: The rate of growth per month (t) of the population $\mathrm{P}(\mathrm{t})$ of Carlos Town is given by the differential equation $\frac{d P}{d t}=5+8 t^{\frac{1}{3}}$ a) Find the general solution of this equation. b) Find the particular solution given that at present ($\mathrm{t}=0$), $\mathrm{P}=5000$ c) What will the population be 8 months from now?	General solution given by: $\int 5+8 t^{\frac{1}{3}} d t=5 t+\frac{8 t^{\frac{4}{3}}}{\frac{4}{3}}+c, \quad \text { so } \quad P=5 t+6 t^{\frac{4}{3}}+c$ To find c , put $\mathrm{P}=5000$ and $\mathrm{t}=0$ so $\mathrm{c}=5000$ Hence $\quad \mathrm{P}=5 t+6 t^{\frac{4}{3}}+5000$ 8 months from now, substitute $t=8$ into the equation $\mathrm{P}=5(8)+6(8)^{\frac{4}{3}}+5000 \quad$ To deal with the $8^{\frac{4}{3}}$ recall that with fractional indices, the denominator specifies the root and the numerator the power. So, $8^{\frac{4}{3}} \Rightarrow(\sqrt[3]{8})^{4} \Rightarrow 2^{4} \Rightarrow 16$ Hence the population after 8 months $=40+96+5000=5136$
The area under a curve You have calculated many areas bounded by straight lines, including rectangles, triangles and parallelograms.	 For example the shaded area shown is: $\frac{1}{2} b^{2}-\frac{1}{2} a^{2}$ (by considering the two squares of side a and b)
It is not so easy to calculate the area bounded by a curve. We will work out a method for calculating the area bounded by the x -axis, the lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ and the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$. From the diagrams and working opposite, we can see that: as $h \rightarrow 0 \quad f(x) \leq \lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h} \leq f(x)$ But $\quad \lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=A^{\prime}(x)$ this is the definition of the derived function So $\mathrm{f}(\mathrm{x})=\mathrm{A}^{\prime}(\mathrm{x})$ and so $A(x)=\int f(x) d x$ by the definition of integration.	We will take $A(x)$ to be the area under the curve up to x and starting at a and use this to find the area of a strip under the curve, h wide. Area of shaded section Area of shaded section Area of shaded section $\begin{array}{ccc} \mathrm{h} \times \mathrm{f}(\mathrm{x}) & \mathrm{A}(\mathrm{x}+\mathrm{h})-\mathrm{A}(\mathrm{x}) & \mathrm{h} \times \mathrm{f}(\mathrm{x}+\mathrm{h}) \\ \text { (simple rectangle) } & \text { Area up to }(\mathrm{x}+\mathrm{h})-\text { Area up to } \mathrm{x} & \text { (simple rectangle) } \\ \mathrm{h} \times \mathrm{f}(\mathrm{x}) & \leq \quad \mathrm{A}(\mathrm{x}+\mathrm{h})-\mathrm{A}(\mathrm{x}) \quad \leq \quad \mathrm{h} \times \mathrm{f}(\mathrm{x}+\mathrm{h}) \end{array}$ Dividing by h ($\neq 0$) $f(x) \leq \frac{A(x+h)-A(x)}{h} \leq f(x+h)$

Unit 2-2 Integration

Area under a curve - some notation

The area we wish to calculate, bounded by the x -axis, the lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ and the curve y $=\mathrm{f}(\mathrm{x})$
is denoted by:
$\int_{a}^{b} f(x) d x \quad$ we call this a definite integral

- read it as "the integral from a to b of $f(x) d x$ "

In one sense, this integral represents the summing of all the strips of area under the curve from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$, and in fact,
is an elongated form of the letter S .

Example: show by shading in sketches, the areas associated with:

$$
\begin{aligned}
& \int_{1}^{4} 2 x d x \\
& \int_{-2}^{2} x^{3} d x
\end{aligned}
$$

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

$\mathrm{A}(\mathrm{x})$ is the area under the curve, starting at $\mathrm{x}=\mathrm{a}$
$A(b)$ is the area under the curve from $x=a$ to $x=b$, which is the area we wish to find.
From the last section $A(x)=\int f(x) d x$
Let $\int f(x) d x=F(x)+c$ where $F^{\prime}(x)=f(x)$
Then $\quad A(x)=F(x)+C$
and $\mathrm{A}(\mathrm{a})=0 \quad$ (from the diagram) $\quad \Rightarrow \quad 0=\mathrm{F}(\mathrm{a})+\mathrm{c} \quad$ so $\quad \mathrm{c}=-\mathrm{F}(\mathrm{a})$
Now $\quad A(x)=F(x)-F(a)$
So $\quad A(b)=F(b)-F(a) \quad$ which is the area we are trying to find.
$\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$ is denoted by $[F(x)]_{a}^{b}$

Examples: Evaluate these integrals:

$$
\begin{aligned}
& \int_{1}^{3} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{1}^{3}=\frac{3^{4}}{4}-\frac{1^{4}}{4}=\frac{81}{4}-\frac{1}{4}=\frac{80}{4}=20 \\
& \int_{-1}^{2} 2 x(3 x+1) d x=\int 6 x^{2}+2 x d x=\left[2 x^{3}+x^{2}\right]_{-1}^{2}=(16+4)-(-2+1)=20+1=21
\end{aligned}
$$

Unit 2-2 Integration

The Area under a curve - calculations

We use the fact that the area between the curve and the x -axis is given by:
$\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)$
where $\mathrm{f}(\mathrm{x}) \geq 0$ and $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

Example:

Calculate the area of the region bounded by: the x -axis, the lines $\mathrm{x}=1$ and $\mathrm{x}=3$ and the parabola $\mathrm{y}=\mathrm{x}^{2}+3$.

Solution:

Applying the above formula:

$$
\begin{array}{r}
\text { Required area }=\int_{1}^{3} x^{2}+3 d x \\
\Rightarrow \quad \Rightarrow \quad\left(\frac{27}{3}+9\right)-\left(\frac{1}{3}+3\right) \\
=18-3 \frac{1}{3}=14 \frac{2}{3} \text { units }^{2}
\end{array}
$$

Example:

Calculate the area of the region:
a) bounded by the x-axis, the line $x=2$ and the parabola $y=x^{2}-1$ (A)
b) enclosed by the parabola and the x -axis (B)

Note:

Integration will give negative values for areas under the \mathbf{x}-axis, since for the shaded strip of width $h, f(x)<0$ and $h>0$ so $h \times f(x)$ is negative.

In the above example, the total area cannot be
found by evaluating $\int_{-1}^{2}\left(x^{2}-1\right) d x$
Its value would be

$$
1 \frac{1}{3}+\left(-1 \frac{1}{3}\right)=0
$$

Areas for $\mathrm{f}(\mathrm{x})<0$ must be calculated separately, and the numerical values added together.
In the example above the total area of $\mathrm{A}+\mathrm{B}$ would be $1 \frac{1}{3}+1 \frac{1}{3}=2 \frac{2}{3}$ units 2

a) \quad Area $\mathrm{A}=$

$$
\int_{1}^{2}\left(x^{2}-1\right) d x=\left[\frac{x^{3}}{3}-x\right]_{1}^{2}=\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-1\right)=1 \frac{1}{3}
$$

b) Area B =
$\int_{-1}^{1}\left(x^{2}-1\right) d x=\left[\frac{x^{3}}{3}-x\right]_{-1}^{1}=\left(\frac{1}{3}-1\right)-\left(\frac{-1}{3}-(-1)\right)=-1 \frac{1}{3}$
This definite integral is negative, however the area has a positive value of $1 \frac{1}{3}$

Unit 2-2 Integration

The area between two curves

The area between the curves $y=f(x)$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$
$=$ the area from the x -axis to the upper curve - the area from the x-axis to the lower curve.

$$
=\int_{a}^{b}(f(x)-g(x)) d x
$$

Example:

Calculate the area enclosed by the parabola $\mathrm{y}=\mathrm{x}^{2}$ and the line $\mathrm{y}=2 \mathrm{x}$.
$y=x^{2}$ meets $y=2 x$ where

$$
\begin{aligned}
& x^{2}=2 x \text { i.e. } x(x-2)=0 \\
& \text { so } x=0 \text { or } x=2
\end{aligned}
$$

The area of the shaded region $=$
$\int_{0}^{2} 2 x d x-\int_{0}^{2} x^{2} d x=\int_{0}^{2} 2 x-x^{2} d x$
$=\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}=\left(4-\frac{8}{3}\right)-(0-0)=1 \frac{1}{3}$

BEWARE:

Remember to watch out for areas below the x -axis. These will evaluate as NEGATIVE.

You must not integrate over a range which includes POSITIVE AND NEGATIVE values of $f(x)$.

Unit 2-3.1
 Calculations in 2 and 3 dimensions

Reminders:

Basic Trigonometry
Sine Rule and Cosine Rule

Area of Triangle

Related Angles - sketch them in on ASTC quadrants to convince yourself.
$\sin \left(180^{\circ}-\mathrm{A}\right)=\sin \mathrm{A}$
$\sin (-A)=-\sin A$
$\cos (180-\mathrm{A})=-\cos \mathrm{A}$
$\cos (-A)=\cos A$

Proofs:

Example:

a) Prove that the area of:

$$
\Delta \mathrm{PQR}=\frac{1}{2} \mathrm{qr} \sin (\alpha+\beta)
$$

b) $\mathrm{p}=\frac{\mathrm{q} \sin (\alpha+\beta)}{\sin \alpha}$

Method:

a) Always start from what you know.

Use formula for area of a triangle.
b) Looks like some variation on sine rule so start with that.

SOH-CAH-TOA $\operatorname{Sin} A=\frac{\text { Opposite }}{\text { Hypotenuse }} \quad \operatorname{Cos} A=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad$ Tan $A=\frac{\text { Opposite }}{\text { Adjacent }}$
Sine Rule $\quad \frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}$

Cosine Rule

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \operatorname{Cos} \mathrm{~A} \quad \operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of Triangle Area of $\Delta \mathrm{ABC}=\frac{1}{2} \mathrm{abSin} \mathrm{C}$
(the sine of an angle is the sine of its supplement - Recall ASTC)

a) Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{ab} \operatorname{Sin} \mathrm{C}$

So Area of $\triangle P Q R=\frac{1}{2} q r \operatorname{Sin} P$
but $\mathrm{P}=180^{\circ}-(\alpha+\beta)$ and $\sin \left\{180^{\circ}-(\alpha+\beta)\right\}=\sin (\alpha+\beta)$
hence: Area of $\Delta \mathrm{PQR}=\frac{1}{2} \mathrm{qr} \operatorname{Sin}(\alpha+\beta) \quad$ q.e.d.
b) Applying sine rule to $\triangle \mathrm{PQR}$ gives: $\frac{\mathrm{p}}{\operatorname{Sin} \mathrm{P}}=\frac{\mathrm{q}}{\operatorname{Sin} \mathrm{Q}}$

However $\angle \mathrm{Q}=\alpha$, so substitute and then re-arrange:

$$
\frac{\mathrm{p}}{\operatorname{Sin} \mathrm{P}}=\frac{\mathrm{q}}{\operatorname{Sin} \alpha} \Rightarrow \mathrm{p}=\frac{\mathrm{q} \operatorname{Sin} \mathrm{P}}{\operatorname{Sin} \alpha}
$$

and from part a) we showed that $\sin P=\sin (\alpha+\beta)$
So: $\mathrm{p}=\frac{\mathrm{q} \sin (\alpha+\beta)}{\operatorname{Sin} \alpha} \quad$ q.e.d.

Unit 2-3.1

Example:

Prove that:
a) $\quad \mathrm{QC}=\frac{d \sin x}{\sin (y-x)}$
b) $\quad \mathrm{AC}=\frac{d \sin x \sin y}{\sin (y-x)}$

Solution:

a) Start with sine rule: $\frac{\mathrm{QC}}{\operatorname{Sin} \mathrm{x}}=\frac{\mathrm{d}}{\operatorname{Sin} \mathrm{PCQ}}$

Now $\angle \mathrm{PQC}=180^{\circ}-\mathrm{y}$
so $\angle \mathrm{PCQ}=180^{\circ}-\left(\mathrm{x}+\left(180^{\circ}-\mathrm{y}\right)\right)=180-(\mathrm{x}+180-\mathrm{y})$
$=180-x-180+y=y-x$
hence: $\quad \frac{Q C}{\operatorname{Sin} x}=\frac{d}{\operatorname{Sin}(y-x)} \quad$ then re-arrange to give:

$$
\mathrm{QC}=\frac{\mathrm{d} \sin \mathrm{x}}{\operatorname{Sin}(\mathrm{y}-\mathrm{x})} \quad \text { q.e.d. }
$$

b) We have QC from part a), we have angle y we are trying to find AC - this is a right angled triangle - which suggests SOH-CAH-TOA - the sine ratio.

So: $\quad \sin y=\frac{\mathrm{AC}}{\mathrm{QC}} \Rightarrow \quad \mathrm{AC}=\mathrm{QC} \sin y$
from previous part we have $\quad \mathrm{QC}=\frac{\mathrm{d} \sin \mathrm{x}}{\operatorname{Sin}(\mathrm{y}-\mathrm{x})}$
so $\quad \mathrm{AC}=\mathrm{QC} \sin \mathrm{y}=\frac{\mathrm{d} \sin \mathrm{x} \sin \mathrm{y}}{\operatorname{Sin}(\mathrm{y}-\mathrm{x})} \quad$ q.e.d.

Rules: Always start from something you know.
Look at what you are trying to prove

- does it look familiar in any way
- does it look similar to sine rule, cosine rule, SOH-CAH-TOA, area of triangle etc.

If it does then you know where to start.
Look at Left Hand Side of what you are trying to prove.

- Can you find a rule or formula linking it with something on the Right Hand Side.

Use the knowledge you have to get from the LHS to the RHS by substitution.

Unit 2 - 3.1 Calculations in 2 and 3 dimensions

Three Dimensions

We live in a 3 dimensional world - a world of length, breadth and height.

We can use the rules listed above, by applying them to 2-dimensional planes within the 3 dimensional solid.

(i) Angle between a line and a plane.

To find the angle between HB and the plane ABCDuse the perpendicular HD and form a right angled triangle Δ HDB
$\angle \mathrm{HBD}$ is the required angle
Calculations may involve Pythagoras and SOH-CAH-TOA

(ii) Angle between two planes.

To find the angle between planes ABGH and $A B C D$ find their line of intersection $A B$.
Then a line in each plane perpendicular to AB , in this diagram, (BC and BG).
$\angle \mathrm{CBG}$ is the required angle.
\angle DAH would also do

Some terminology:

Face diagonal - this is a diagonal across a face. e.g. AH, ED, EG, FH etc.

Space diagonal - this is a diagonal linking two vertices which are not in the same face.
e.g. BH, AG, EC, DF

To find lengths of diagonals, calculations may involve Pythagoras and SOH-CAH-TOA.

| Co-ordinates in $\mathbf{2}$ and $\mathbf{3}$ dimensions |
| :--- | :--- |
| To fix the position of a point on a plane |
| (2 dimensions), you need two axes OX and OY . |
| \mathbf{P} is the point (\mathbf{x}, \mathbf{y}) |

Unit 2-3.2 Compound Angle Formula

Reminders:

Related Angles: (Sketch the ASTC quadrants)
$\sin \left(180^{\circ}-\mathrm{A}\right)=\sin \mathrm{A}$
(the sine of an angle is the sine of its
supplement - Recall ASTC)
$\sin (90-A)=\cos A$
$\sin (-A)=-\sin A$
$\cos (180-A)=-\cos A$
$\cos (90-A)=\sin A$
$\cos (-A)=\cos A$

Sin, cos, tan formulae
$\frac{\sin \mathrm{A}}{\cos \mathrm{A}}=\tan \mathrm{A}$
$\sin ^{2} A+\cos ^{2} A=1$

Radians and Degrees

π radians $=180^{\circ}$

Compound Angle formulae

$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\sin (A+B)=\sin A \cos B+\cos B \sin A$
$\sin (A-B)=\sin A \cos B-\cos B \sin A$
These formulae are true for all angles A and B whether in degrees or radians.

Double Angle Formulae

$\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}$
$\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
$\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
$\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$

By re-arranging the formulae for $\cos 2 \mathrm{~A}$ above we can also obtain:
$\cos ^{2} \mathrm{~A}=1 / 2(1+\cos 2 \mathrm{~A})$
$\sin ^{2} A=1 / 2(1-\cos 2 A)$
These are all useful identities and are often used in proofs and calculations.

Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
Degrees	30°	45°	60°
\sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
\tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Unit 2 - 3.2 Compound Angle Formula

Examples:

1. | Using $75^{\circ}=30^{\circ}+45^{\circ}$, |
| :--- |
| show that $\cos 75=\frac{\sqrt{3}-1}{2 \sqrt{2}}$ |
2. Using $3 \mathrm{~A}=2 \mathrm{~A}+\mathrm{A}$ prove that: $\sin 3 A=3 \sin A-4 \sin ^{3} A$

$$
\begin{aligned}
\cos 75 & =\cos (30+45) \quad=\cos 30 \cos 45-\sin 30 \sin 45 \\
& =\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}-\frac{1}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}
\end{aligned}
$$

$\sin 3 A=\sin (2 A+A)=\sin 2 A \cos A+\sin A \cos 2 A$
$\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\cos ^{2} A-\sin ^{2} A$
$\cos ^{2} A=1-\sin ^{2} A$
$\therefore \sin 3 A=2 \sin A \cos A \cos A+\sin A\left(1-2 \sin ^{2} A\right)$
$\therefore \sin 3 A=2 \sin A\left(1-\sin ^{2} A\right)+\sin A\left(1-2 \sin ^{2} A\right)$
$\therefore \sin 3 A=2 \sin A-2 \sin ^{3} A+\sin A-2 \sin ^{3} A$
$\therefore \sin 3 A=3 \sin A-4 \sin ^{3} A$

Example 3.

Express $\cos ^{4} \mathrm{x}$ in the form $\mathrm{a}+\mathrm{b} \cos \mathrm{x}+\mathrm{c} \cos$ 4x
(Hint: start with $\left.\cos ^{2} x=1 / 2(1+\cos 2 x)\right)$

$$
\begin{aligned}
\cos ^{2} x= & \frac{1}{2}(1+\cos 2 x) \\
\cos ^{4} x= & \frac{1}{2}(1+\cos 2 x) \cdot \frac{1}{2}(1+\cos 2 x) \\
\cos ^{4} x= & \frac{1}{4}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) \\
& \quad \cos 4 x=\cos (2 x+2 x)=\cos ^{2} 2 x-\sin ^{2} 2 x \\
& \sin ^{2} 2 x=1-\cos ^{2} 2 x \\
& \quad \cos 4 x=\cos ^{2} 2 x-1+\cos ^{2} 2 x \\
& \cos 4 x+1=2 \cos ^{2} 2 x \\
& \frac{1}{2}(\cos 4 x+1)=\cos ^{2} 2 x \\
\cos ^{4} x= & \frac{1}{4}\left(1+2 \cos 2 x+\frac{1}{2}(\cos 4 x+1)\right) \\
\cos ^{4} x= & \frac{1}{4}\left(1+2 \cos 2 x+\frac{1}{2} \cos 4 x+\frac{1}{2}\right) \\
\cos ^{4} x= & \frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x+\frac{1}{8} \\
\cos ^{4} x= & \frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x
\end{aligned}
$$

Solving Trigonometric Equations

Example 4:

Solve $\cos 2 x+\cos x+1=0$
for $0 \leq x \leq 360^{\circ}$

Hence solutions are:

$$
\mathrm{x}=90^{\circ}, 120^{\circ}, 240^{\circ}, 270^{\circ}
$$

$\cos 2 x+\cos x+1=0$
$\cos ^{2} x-\sin ^{2} x+\cos x+1=0$
$\cos ^{2} x-\left(1-\cos ^{2} x\right)+\cos x+1=0$
$\cos ^{2} x-1+\cos ^{2} x+\cos x+1=0$
$2 \cos ^{2} x+\cos x=0$
$\cos x(2 \cos x+1)=0$
$\cos x=0$ or $\cos x=-\frac{1}{2}$
$x=90^{\circ}$ or 270° or acute $x=60^{\circ}$ so $x=120^{\circ}$ or 240°

Unit 2-3.2

Example 5:

Solve $\sin 2 \theta+\cos \theta=0$ for $0 \leq x \leq 2 \pi$

Hence solutions are:

$\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$
$\sin 2 \theta+\cos \theta=0$
$2 \sin \theta \cos \theta+\cos \theta=0$
$\cos \theta(2 \sin \theta+1)=0$
$\cos \theta=0$ or $\sin \theta=-\frac{1}{2}$
$\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$ or acute $\theta=\frac{\pi}{6}$ so $\theta=\pi+\frac{\pi}{6}$ or $2 \pi-\frac{\pi}{6}$
$5 \cos 2 \theta-\cos \theta+2=0$
$5\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-\cos \theta+2=0$
$5\left(\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)\right)-\cos \theta+2=0$
$5\left(2 \cos ^{2} \theta-1\right)-\cos \theta+2=0$
$10 \cos ^{2} \theta-5-\cos \theta+2=0$
$10 \cos ^{2} \theta-\cos \theta-3=0$
$(5 \cos \theta-3)(2 \cos \theta+1)=0$
so $\cos \theta=\frac{3}{5}$ or $\cos \theta=-\frac{1}{2}$
acute $\theta=0.927 \mathrm{rad}$ or acute $\theta=\frac{\pi}{3} \mathrm{rad}$
hence $\theta=0.927$ or $2 \pi-0.927$ or $\theta=\pi-\frac{\pi}{3}$ or $\pi+\frac{\pi}{3} \mathrm{rad}$

Summary of methods

Use double angle formula to expand:
$\sin 2 x$ or $\cos 2 x$

Use $\sin ^{2} A+\cos ^{2} A=1$
to switch from $\cos ^{2} \mathrm{x}$ to $\sin ^{2} \mathrm{x}$ or vice versa

You will generally get a quadratic in $\cos \mathrm{x}$ or $\sin \mathrm{x}$ or a mixture.

Factorise:
i) common factor
ii) two brackets

Make sure you get ALL the roots.

Unit 2-3.2 Compound Angle Formula

Graphs with equations

Recall sketching graphs of trigonometric functions

$$
y=a \sin n x \quad y=a \cos n x
$$

$\mathrm{a}=$ the amplitude
$\mathrm{n}=$ the number of cycles in 360° or 2π radians
the period of the function is: $\frac{360}{n}$ or $\frac{2 \pi}{n}$

$$
y=a \sin (x+b)
$$

the sine function is shifted b° to the left

$$
y=a \cos (x-b)
$$

the cosine function is shifted b° to the right equivalent statements can be made when working in radians.

Graphs of:

$y=\sin x$ and $y=\cos x$ moved $\frac{\pi}{4}$ to right.

Graphs of:

$\mathrm{y}=\sin \mathrm{x}$ and $\mathrm{y}=\cos \mathrm{x}$ moved $\frac{\pi}{4}$ to left.

Unit 2-4 The Circle

The circle - centre $O(0,0)$ and radius r
$x^{2}+y^{2}=r^{2}$
The equation of a circle is given by the locus of Point P
which describes a path at a constant distance r from the origin.

We need to find a relationship between x and y that satisfies this condition.
By Pythagoras: $\quad x^{2}+y^{2}=r^{2}$
Hence the equation of the circle is:

$$
x^{2}+y^{2}=r^{2}
$$

Application:

Given the equation of a circle in the form $x^{2}+y^{2}=r^{2}$
we can write down the radius.

Application:

If we know that the circle is centred on the origin and passes through a given point, we can find its equation:

Application:

We can check that a point lies on a circle - if it does then it will satisfy the equation of the circle:

Example: the radius of the circle: $x^{2}+y^{2}=64$ is $r=8$
Example: the radius of the circle: $\quad 3 x^{2}+3 y^{2}=48$ first divide by 3 to get the form $x^{2}+y^{2}=r^{2}$

$$
x^{2}+y^{2}=16 \quad \text { so } \quad \mathbf{r}=4
$$

Example:

Find the equation of the circle centre O passing through $\mathrm{P}(3,4)$
using the distance formula, we can calculate OP as 5
This is the radius of the circle.
Hence $x^{2}+y^{2}=25$

Example: \quad Does the point $R(12,-9)$ lie on the circle $x^{2}+y^{2}=225$

$$
\begin{array}{cc}
\text { LHS } & \text { RHS } \\
\mathrm{x}^{2}+\mathrm{y}^{2} & 225 \\
144+81 & \\
225 &
\end{array}
$$

Since LHS = RHS, point R satisfies the equation, so R lies on the circle.

Alternative method:

If the point $R(12,-9)$ lies on the circle, then OR will be equal to the radius of the circle (which is 15).
Using the distance formula we find that $\mathrm{OR}=15$, so R lies on the circle.

Example:

Find p if $(p, 3)$ lies on the circle $x^{2}+y^{2}=13$
$(p, 3)$ must satisfy the equation of the circle, so:

$$
\begin{gathered}
\mathrm{p}^{2}+3^{2}=13 \Rightarrow \mathrm{p}^{2}=13-9 \Rightarrow \mathrm{p}^{2}=4 \\
\text { so } \mathrm{p}= \pm 2
\end{gathered}
$$

Example:

Does the point $Q(7,-4)$ lie on the circle $x^{2}+y^{2}=64$
The distance OQ (by the distance formula $=\sqrt{ } 65$)
This is larger than the radius of the circle,
so Q does NOT lie on the circle

Unit 2-4 The Circle

The circle centre $C(a, b)$ and radius r

$(x-a)^{2}+(y-b)^{2}=r^{2}$
The equation of this circle is given by the locus of Point P which describes a path at a constant distance r from the centre, $\mathrm{C}(\mathrm{a}, \mathrm{b})$
We need to find a relationship between x and y that satisfies this condition.
By Pythagoras: $(x-a)^{2}+(y-b)^{2}=r^{2}$
Hence the equation of the circle is:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Applications:

Given the equation of a circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

we can write down the co-ordinates of the centre of the circle and its radius.

Example:

State the centre and radius of the circle: $(x-3)^{2}+(y-5)^{2}=9$
Circle is centred on $(3,5)$ and has a radius of 3

Example:

State the centre and radius of the circle: $(x+7)^{2}+(y-2)^{2}=16$
Circle is centred on $(-7,2)$ and has a radius of 4

Example:

State the centre and radius of the circle: $x^{2}+(y+6)^{2}=49$
Circle is centred on ($0,-6$) and has a radius of 7

Example:

Write down the equation of the circle with centre $(3,-1)$ and radius 2
Equation is: $(x-3)^{2}+(y+1)^{2}=4$

Example:

Find the equation of the circle passing through the point $\mathrm{P}(3,-2)$
with centre C(-3, 0)

First we need to find the radius using the distance formula.
PC is the radius and PC $=\sqrt{(3-(-3))^{2}+(-2-0)^{2}}=\sqrt{36+4}=\sqrt{40}$
So $r^{2}=40 \quad$ Hence equation of circle is: $(x+3)^{2}+y^{2}=40$

Application:

If two circles touch, then we know that the distance between the centres of the two circles (using distance formula) is equal to the sums of their radii.

The converse also applies: If we want to find whether two circles touch, check the distance apart of the two centres and see if it is equal to the sum of their radii.

We can find the equation of a circle which passes through two points which form the diameter of the circle.

Unit 2-4 The Circle

Applications and strategies:

You should recall previous work on the circle and be prepared to apply some of the facts you already know:

Summary:

Radius is half the diameter
Distance between centres of two circles which touch will be sum of radii.
Angle in a semi-circle is a right angle
A tangent to a circle is at right angles $\left(90^{\circ}\right)$ to the radius (or diameter)
Look for bisected chords (right angles to radius or diameter)

Look for symmetry
Look for isosceles triangles.
The shortest distance from a point to a line is a straight line perpendicular to the line.

Given three points P, Q, R, you can find the equation of the circle passing through them all.

Join PQ (a chord) - Find gradient and midpoint. Find equation of perpendicular.

Join QR (a chord) - Find gradient and midpoint. Find equation of perpendicular.
Solve these two equations simultaneously - this gives co-ordinates of centre.

Distance from centre to P or Q or R will give radius.
Use radius and co-ordinates of centre to write down equation of the circle.

Example:

The small circle centre C has equation $(x+2)^{2}+(y+1)^{2}=25$ The large circle, centres A and B, touch the small circle and $A B$ is parallel to the x-axis.

Find: a) the centre and radius of each circle
b) the equations of the large circles.

Solution:

a)

For circle centred on C : co-ordinates of C are $(-2,-1)$ and radius is 5 Hence: A is $(-7,-1)$ and B is $(3,-1)$ and radii of both circles are the same ($=A B$) which is the diameter of circle at C

$$
\text { radii of Circle A and circle B is } 10
$$

b)

Equation of circle centre A is: $(x+7)^{2}+(y+1)^{2}=100$
Equation of circle centre B is: $(x-3)^{2}+(y+1)^{2}=100$

Unit 2-4 The Circle

The general equation of a circle:

$x^{2}+y^{2}+2 g x+2 f y+c=0$
with centre (-g, -f) and radius $\sqrt{g^{2}+f^{2}-c}$ provided that $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}>0$

Note that the coefficients of x^{2} and y^{2} must be 1 .

Strategies:

Given a circle in this form - we can find the centre and radius

We can then continue using strategies stated previously.

Example:

Show that the equation:
$3 x^{2}+3 y^{2}-12 x+24 y-36=0$
and find its centre and radius.

The equation: $(x-4)^{2}+(y+3)^{2}=4$
represents a circle with centre $(4,-3)$ and radius 2
Multiplying out we get: $x^{2}-8 x+16+y^{2}+6 y+9=4$
Re-arranging we get: $\quad x^{2}+y^{2}-8 x+6 y+21=0$
and this represents the same circle.
Can we show that: $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle ?
Re-arranging we get: $x^{2}+2 g x+y^{2}+2 f y=-c$
Now complete the square $(x+g)^{2}-g^{2}+(y+f)^{2}-f^{2}=-c$
thus: $\quad(x+g)^{2}+(y+f)^{2}=g^{2}+f^{2}-c$
we may choose to write this as:
$(x-(-g))^{2}+(y-(-f))^{2}=g^{2}+f^{2}-c$
and note that this represents a circle:
with centre ($-\mathrm{g},-\mathrm{f}$) and radius $\sqrt{g^{2}+f^{2}-c}$
provided that $g^{2}+f^{2}-c>0$

Divide throughout by $3 \Rightarrow x^{2}+y^{2}-4 x+8 y-12=0$
Compare with standard equation $x^{2}+y^{2}+2 g x+2 f y+c=0$
this gives us: $2 g=-4$ so $\mathbf{g}=\mathbf{- 2}$ and $2 f=8$ so $\mathbf{f}=\mathbf{4}$ and $\mathbf{c}=\mathbf{- 1 2}$
Condition for a circle is: $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}>0$
and the coefficients x^{2} and y^{2} are equal to 1
$(-2)^{2}+4^{2}-(-12)=4+16+12=32$ which is >0
so it is the equation of a circle.
The radius of the circle is $\sqrt{g^{2}+f^{2}-c}$ so $\mathbf{r}=\sqrt{32} \quad($ or $4 \sqrt{2})$
Centre is: $(-\mathrm{g},-\mathrm{f})$ which gives Centre $=(2,-4)$

Mid-point PQ is M(1/2, $41 / 2$)
Gradient PQ is $-3 \quad$ Gradient $\mathrm{MC}=\quad \frac{1}{3}$
Equation of MC is: $\quad \frac{y-4 \frac{1}{2}}{x-\frac{1}{2}}=\frac{1}{3} \Rightarrow 3 y-\frac{27}{2}=x-\frac{1}{2}$
Re-arranging $\Rightarrow 3 y-x-13=0$
(1) \{Equation MC\}
Repeat for NC Mid-point QR is $\mathrm{N}(0,1)$
Gradient QR is $2 \quad$ Gradient $\mathrm{MC}=\quad-\frac{1}{2}$
Equation of NC is: $\quad \frac{y-1}{x-0}=-\frac{1}{2} \Rightarrow 2 y-2+x=0$
Re-arranging gives: $2 \mathrm{y}+\mathrm{x}-2=0 \quad \ldots .$. (2) $\{$ Equation NC$\}$
Solving (1) and (2) simultaneously we get: $x=-4, y=3$
Hence centre of equation is $C(-4,3)$
To find radius: find distance RC (or CQ or CP)
Using distance formula gives $\mathrm{RC}=5$
Hence equation of circle is: $(x+4)^{2}+(y-3)^{2}=25$
or: $\quad x^{2}+8 x+16+y^{2}-6 y+9=25 \quad \Rightarrow \quad x^{2}+y^{2}+8 x-6 y=0$

Unit 2-4 The Circle

Example:

a) Find the centres and radii of the circles: $x^{2}+y^{2}=4$
and $\quad x^{2}+y^{2}-8 x+6 y+24=0$
b) Sketch the circles and calculate the shortest distance between their circumferences.

Tangents to a circle

To find the tangent to a circle at a given point $P(x, y)$

- Find the centre of the circle
- Find the gradient of the radius line from the centre to point P
- The tangent is perpendicular to the radius
- Find the gradient of the tangent
- Now find the equation of the tangent through point P
$x^{2}+y^{2}=4 \quad$ Centre ($\mathbf{0}, \mathbf{0}$) and radius $=2$
$x^{2}+y^{2}-8 x+6 y+24=0 \quad 2 g=-8 \quad$ so $-g=4 \quad 2 f=6 \quad$ so $-f=-3$
radius $=\sqrt{g^{2}+f^{2}-c} \quad$ so radius $=\sqrt{ }(16+9-24)=\mathbf{1}$

Hence \quad Centre (4, -3) and radius 1
sketch

The shortest distance between the circumferences will be along the line joining their centres.

Distance AB = 5 (distance formula)
Radius circle $\mathrm{A}=2$, radius circle $\mathrm{B}=1$
So distance between circumferences $=5-1-2=2$
Distance between circumferences $=\mathbf{2}$ the circles:

Example:

Find the equation of the tangent to the circle
$x^{2}+y^{2}-4 x+6 y-12=0$ at the point $P(5,1)$

Solution:

The centre C is $(2,-3)$ \{ using centre at $(-\mathrm{g},-\mathrm{f})\}$
Gradient PC $=\frac{1-(-3)}{5-2} \Rightarrow \frac{4}{3}$
Gradient of tangent $=-\frac{3}{4}$
Hence equation of tangent is: $\quad y-1=-\frac{3}{4}(x-5)$
$\Rightarrow \quad 4 y-4=-3 x+15$

Simplifying to : Equation of tangent is: $\quad \mathbf{4 y}+\mathbf{3 x}=\mathbf{1 9}$

Unit 2-4 The Circle

Intersection of lines and circles

Use simultaneous equations to find the point of intersection.

Generally you will get two points of intersection.
Where the line enters and exits the circle,

tangency

unless the line is a tangent to the circle, in which case there will only be one point of intersection.

avoids the circle

or if the line misses the circle altogether, in which case there will be no points of intersection.

Use of discriminant

We can also use the discriminant to give us information about the intersection of a line and a circle.

For example, by considering the quadratic equation which results from a simultaneous equation solution
We can deduce that:

Line meets the circle

in two distinct points

$$
\mathrm{b}^{2}-4 \mathrm{ac}>0
$$

real and distinct roots
at one point only (tangent)

$$
\mathrm{b}^{2}-4 \mathrm{ac}=0
$$

equal roots
at no point

$$
b^{2}-4 \mathrm{ac}<0
$$

Example:

Find the co-ordinates of the points of intersection of the line $5 y-x+7=0$
and the circle $x^{2}+y^{2}+2 x-2 y-11=0$

Solution:

$\begin{array}{ll}\text { The lines meet when } & 5 y-x+7=0 \\ \text { and } & x^{2}+y^{2}+2 x-2 y-11=0\end{array}$
all we have to do is solve the equations simultaneously

Re-arrange (1) to give $x=5 y+7$ and substitute into (2)
$\Rightarrow \quad(5 y+7)^{2}+y^{2}+2(5 y+7)-2 y-11=0$
$\Rightarrow \quad 25 y^{2}+70 y+49+y^{2}+10 y+14-2 y-11=0$
$\Rightarrow \quad 26 y^{2}+78 y+52=0 \quad$ (simplify by dividing by 26)
$\Rightarrow \quad y^{2}+3 y+2=0$
$\Rightarrow \quad(y+2)(y+1)=0 \quad$ hence $y=-2$ or $y=-1$
when $y=-2, x=-3$ and when $y=-1, x=2$
So the points of intersection are: ($-3,-2$) and (2, -1)

Example:

Find the values of k for $\mathrm{y}=\mathrm{x}+\mathrm{k}$ to be a tangent
to the circle $x^{2}+y^{2}=8$

Solution:

The line and circle intersect where

$$
x^{2}+(x+k)^{2}=8
$$

(quadratic equation from simultaneous substitution)
i.e. $\quad x^{2}+x^{2}+2 k x+k^{2}=8$
$\Rightarrow \quad 2 \mathrm{x}^{2}+2 \mathrm{kx}+\mathrm{k}^{2}-8=0$
for a tangent we require only one solution i.e. equal roots
$b^{2}-4 \mathrm{ac}=0$
$\Rightarrow 4 \mathrm{k}^{2}-4(2)\left(\mathrm{k}^{2}-8\right)=0$
$\Rightarrow-4 \mathrm{k}^{2}-64=0 \quad$ (divide throughout by 4)
$\Rightarrow-\mathrm{k}^{2}-16=0 \quad \Rightarrow \mathrm{k}^{2}=16$
Hence $k= \pm 4 \quad$ (giving tangents $y=x \pm 4)$

