Unit 2 -	1.1	Polynomials										
Polynomial:An expression of the form: $a_nx^n + a_{n-1}x^{n-1} + \dots + a_3x^3 + a_2x^2 + a_1x + a_0$ with a_0, \dots, a_n constants and $a_n \neq 0$ is called a polynomial of degree n(the highest power of x is the degree)Division - some terms:Divisor - what you are dividing byDividend - the number you are dividing intoQuotient - how many times the divisorgoes into the dividend			Divisor		Quo	tient	r.	Rema	ainder			
Division of – Nested o Dividing f(: Note: the d	polynon synthet (x) by x – ivisor M	h UST be in the form x – h	Example Find the Write do	e of synth quotient wn the co – taking	netic (ne and rema pefficien care to	ested) d ainder v ts of the put a 0	ivision: when x ³ e polyno where a	+ 6x ² omial a powe	+3x - 1 er of x is	5 is div missing	ided by x	- 3
Example: Find the quotient and remainder when $x^3 + 6x^2 + 3x - 15$ is divided by $x - 3$ Follow the working opposite.				3	A 1 ↓ 1	B 6 3 9	C 3 27 30	D -15 90 75	1 2 3			
remainder is 75 It should also be noted that the remainder when the divisor is $x - 3$ is f(3) To illustrate this f(3) = $3^3 + 6(3)^2 + 3(3) - 15$ = 27 + 54 + 9 - 15 = 75		The sh Step 1. Step 2. Step 3. Step 4. Step 5.	naded row Put th Multip Add E Multip Add C	and column e conten bly A3 b bl to B2 bly B3 by C1 to C2	mn are used of A is of a second strain	sed ther straight visor an t result visor ar t result	<i>e only i</i> nt dow nd put in B3 nd put into C3	to refer to yn to A3 result in result in 3	the table B2 C2	e for explai	nation.	
If we divid the remain	ed the qu der woul	adratic f(x) by x – h then d be f(h)	Step 6. Step 7. A3, B3,	Multip Add E C3 are the	bly C3 b 01 and D e coeffic	y diviso 2 and p ients of	or and p out resul	out resu lt into otient	ult into D D3 and D3	2 is the re	emainder.	
Example: Find the que $x^3 + 6x^2 + 3$ Note we multiply the quotient remainder	otient and x - 15 is ust make nt is $x^2 + \frac{1}{3}$ is -3	I remainder when divided by $x + 3$ x + 3 into $x - (-3)\cdot 3x - 6 and the$			-	3		6 3 3	3 -1 -9 18 -6 -3	.5 8 3		
Example: Find the que $2x^3 + 3x^2 - 3x^2$ Again we h form $\mathbf{x} - \mathbf{h}$ 2x + 1 is the ignore the f deal with the	otient and 5x + 3 is ave to arr the same a actor of 2 at separa	I remainder when divided by $2x + 1$ range the divisor into the s $2(x + \frac{1}{2})$ or $2(x - (-\frac{1}{2}))$ 2 at the moment – we will tely.	$-\frac{1}{2}$ So, the o NB we	2 ↓ 2 quotient do NOT	3 -1 2 becomes divide t	-5 -1 -6 5: x ² + he rem	3 3 6 x - 3 ainder	T th t th w and th as we	The quotione remain Iowever with quotie Me quotie We took ou The remai	ent is 2 nder is we now ent by t ut.	$2x^2 + 2x - 6$ have to d he factor	6 and ivide of 2 that

Uni	t 2 -	1.1	Polynomials	
The Remainder Theorem When any polynomial $f(x)$ is divided by $x - h$ the remainder is given by $f(h)$			eorem al f(x) is divided by x – h n by f(h)	We can find f(h) directly to obtain the remainder, or we can use synthetic division.
The Factor Theorem If the remainder when dividing a polynomial $f(x)$ by $x - h$ is 0 then $x - h$ is a factor of $f(x)$ i.e. if $f(h) = 0$ then $x - h$ is a factor			n n dividing a polynomial n x – h is a factor of f(x) – h is a factor.	This is a follow on from the Remainder Theorem and is perhaps more important and certainly useful.
This allows us to find factors of polynomials of any degree. Once we have a factor, we can divide by the factor using synthetic division, and obtain another polynomial of degree one less. We can then repeat the process to obtain another factor if one aviets		d factors of polynomials of have a factor, we can using synthetic division, plynomial of degree one me process to obtain exists.	Example : Find the factors of : $f(x) = 2x^3 - 11x^2 + 17x - 6$ possible values for h are $\pm 1, \pm 2, \pm 3, \pm 6$, Try h = 1 f(h) = f(1) = 2 - 11 + 17 - 6 = 2 this is not zero so $(x - 1)$ is not a factor Try h = -1 f(h) = f(-1) = -2 - 11 - 17 - 6 = -36 this is not zero so $(x + 1)$ is not a factor	
Usin	g the F	factor Th	neorem.	Try h = 2 f(h) = f(2) = 16 - 44 + 34 - 6 = 0 so $(x - 2)$ is a factor
The effollo	easiest ws:	way to us	se the factor Theorem is as	Now obtain the quotient:
1.	Look the po possib	at the fac lynomial le values	tors of the constant term in $f(x)$ these are the only for h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.	Evalu then y	ate f(h) u ou have a	ntil you find $f(h) = 0$ and a factor.	2 -7 3 0
3.	Once polyne and ol is of d	you have omial by otain the legree one	a factor, divide the it using synthetic division polynomial quotient which e less.	Quotient is: $2x^2 - 7x + 3$ so polynomial is $(x - 2)(2x^2 - 7x + 3)$ Now factorise the quadratic factor using two brackets: $2x^2 - 7x + 3 \Rightarrow (2x - 3)(x - 3)$
4.	Repea more	t the proo factors.	cess until you can find no	Hence: $f(x) = 2x^3 - 11x^2 + 17x - 6$ factorises to $f(x) = (x - 2)(2x - 3)(x - 3)$
Solvi	ing Pol	ynomial	Equations	Example : solve the equation $x^3 - 2x^2 - x + 2 = 0$
If h is a root of the equation $f(x) = 0$ then (x - h) is a factor of $f(x)$ and so $f(h) = 0$ Recall the graph of $f(x)$ a root is where $f(x)$		equation $f(x) = 0$ then f(x) and so $f(h) = 0(x) a root is where f(x)$	First find a factor – try possible values: ± 1 , ± 2 f(1) = 1 – 2 – 1 + 2 $\Rightarrow 0$ so (x – 1) is a factor Use synthetic division to divide f(x) by the factor	
crosses the x axis – in other words $f(x) = 0$ Consequently the value of x, at which $f(x) = 0$,		n other words $f(x) = 0$ ue of x, at which $f(x) = 0$,		
is a root of the equation $f(x) = 0$ So if we can find h such that $f(h) = 0$ then we have a root of the equation $f(x) = 0$		on $f(x) = 0$ uch that $f(h) = 0$ then we lation $f(x) = 0$	$1 \qquad 1 \qquad 1 \qquad -2 \qquad -1 \qquad 2 \\ \downarrow \qquad 1 \qquad -1 \qquad -2 \\ \hline 1 \qquad -1 \qquad -2 \qquad 0 \\ hence: \qquad x^3 - 2x^2 - x + 2 = 0 factorises to (x - 1)(x^2 - x - 2) = 0 \\ now factorise the quadratic part to get: (x - 1)(x - 2)(x + 1) = 0 \\ \end{cases}$	
			Hence solutions of the equation: $x^3 - 2x^2 - x + 2 = 0$ are: $x = 1$, $x = 2$ and $x = -1$	

Unit 2 - 1.1	Polynomials	
Finding approxima f(x) = 0	te roots of the equation	
The previous method will work providing	l using the factor theorem the polynomial has factors	
i.e. the roots are ratio	onal.	
If they are not rational factorise and so we us approximate the root	al, the polynomial will not use a method to s.	
Solving by Iteration	1	
Recall the graph of a	function.	Example:
The roots are where	f(x) crosses the x axis.	Show that $x^3 - 3x + 1 = 0$ has a real root between 1 and 2
To one side of the ro	ot f(x) will be positive and	Find an approximation for the root to 1 decimal place.
on the other side of t	he root, $f(x)$ will be	f(1) = 1 - 3 + 1 = -1
So by finding two po	hints such that $f(x)$ is	f(2) = 8 - 6 + 1 = 3
positive at one point you know that the ro	and negative at the other, ot must lie between the two	\therefore f(x) crosses the x axis between x=1 and x=2, indicating a root α there.
points.		Now home in on the root – you may use your calculator here – CAREFULLY!
Take the middle poir and depending upon	the tween these two points whether this is positive or	$f(1.5) \approx -0.13$ So $1.5 < \alpha < 2$
negative it will tell y	ou on which side of the	$f(1.7) \approx +0.81$ So $1.5 < \alpha < 1.7$
middle point the root	t lies.	$f(1.6) \approx +0.30$ So $1.5 < \alpha < 21.6$
Repeat this process u the root as close as the	intil you have approached	$f(1.55) \approx +0.07$ So $1.5 < \alpha < 1.55$
If you want accuracy	to 1 decimal place then	$f(1.54) \approx +0.03$ So $1.5 < \alpha < 1.54$
you need to find the root with knowledge of the 2^{nd} decimal place.		hence root is 1.5 correct to 1 decimal place
This is a proces	ss known as iteration.	

Unit 2 - 1.2	Quadratic Theory		
Reminders:			
$f(x) = ax^2 + bx + c a$	$\neq 0$ is a quadratic function		
$3x^{2} + 2x - 1$ is a qua with a = 3, b = 2 and	dratic expression c = -1		
$3x^2 + 2x - 1 = 0$ is a q (this one can be solve	uadratic equation ed by factors)		
A quadratic equation (x - 2)(x + 3) = 0 wh	with roots 2 and -3 is ich multiplies out to $x^2 + x - 6 = 0$		
Solving Quadratic Equations We know the following methods for solving quadratic equations: 1. Graphically, where the graph crosses the x axis. 2. Factorise (put into 2 brackets) 3. Use the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 4. Completing the square:		Example: Solve $x^2 - 2x - 4 = 0$ by completing the square $(x - 1)^2 - 1 - 4 = 0$ $(x - 1)^2 - 5 = 0$ $(x - 1)^2 = 5$ $x = 1 \pm \sqrt{5}$ hence $x = 3.24$ or -1.24 (corr. to 2 d.p.) Example: solve $3x^2 + 4x - 5 = 0$ using the formula Here we have $a = 3, b = 4$ and $c = -5$ Use: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ giving $x = \frac{-4 \pm \sqrt{4^2 - 4(3)(-5)}}{2(3)}$ Hence: $x = \frac{-4 \pm \sqrt{16 + 60}}{6}$ and $x = \frac{-4 \pm \sqrt{76}}{6}$	
		so $x = 0.79$ or -2.12 (correct to 2 dec. pl)	
The Discriminant If we look at the forr equations	nula for the solution of quadratic $=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$	Example: For what value of p does the equation $x^2 - 2x + p = 0$ have equal root $b^2 - 4ac = 4 - 4(1)(p) = 4 - 4p$ for equal roots this must be zero so $4 - 4p = 0$ hence $4 = 4p$ and $p = 1$.s.
we note that $b^2 - 4$ determining the natu we call $b^2 - 4ac$ th discriminates between if $b^2 - 4ac > 0$ $b^2 - 4ac = 0$ $b^2 - 4ac < 0$	 <i>ac</i> plays a fundamental role in re of the solutions. e Discriminant – because it en different types of solution. ⇒ two real and distinct roots ⇒ the roots are equal ⇒ there are no real roots. 	Example: Find the range of values for m for which $5x^2 - 3mx + 5 = 0$ has two m and distinct roots. $b^2 - 4ac = 9m^2 - 4(5)(5) = 9m^2 - 100$ For real and distinct roots: $9m^2 - 100 > 0$ hence $9m^2 > 100$ $m^2 > \frac{100}{9}$ $m > + \frac{10}{3}$ $m < -\frac{10}{3}$ Example: For what value of k does the graph $y = kx^2 - 3kx + 9$ touch the x-axis To touch the x axis, there must be equal roots so discriminant = 0 $b^2 - 4ac = 9k^2 - 4(k)(9) = 9k^2 - 36k$ $9k^2 - 36k = 0$ $9k(k - 4) = 0$ so $k = 0$ or $k = 4$	real

Unit 2 - 1.2	Quadratic Theory			
Tangents to curves:				
Example:				
Find the value of c if the line $y = 5x + c$ is a tangent to the parabola $y = x^2 + 3x + 4$		To find the point of intersection equations: $y = 5y$	h of the line and parabola, solve the simultaneous $x + c$	
See opposite for me	ethod:	y = 3x $y = x^2$	$x^{2} + 3x + 4$	
The point of intersec	ction is given by	by substitution we get $5x + c$	$=x^2+3x+4$	
equation (1) v	with $c = 3$	re-arranging gives: $x^2 - 2x$	+ (4 - c) = 0(1)	
So $x^2 - 2x + 1 = 0$	which factorises to	For the line to be tangent, the l	ine must intersect the curve at ONE point only	
(x - 1)(x - 1) = 0 for $x = 1$ the tens	ence $x = 1$	i.e. we want equal roots so b^2	-4ac = 0 hence $4-4(1)(4-c) = 0$	
$y = 5x + 3 \implies y = 8$	B	and so $4 - 16 + 4c = 0$ -12	2 + 4c = 0 $c = 3$	
So point of intersec	tion is (1, 8)	So the equation of the tang	y = 5x + 3	
-				
Quadratic Inequali	ties			
Solve this inequality	$x^2 - 6x + 5 > 0$			
First sketch the cur	ve $y = x^2 - 6x + 5$	6	5	
Factorising gives us	$\mathbf{y} = (\mathbf{x} - 5)(\mathbf{x} - 1)$		1 3 5	
So curve crosses the	x-axis at: $\mathbf{x} = 1$ and $\mathbf{x} = 5$			
The y-intercept is $y = 5$ (when $x = 0$)		-4	-4	
(symmetry between	x = 1 and $x = 5$)	(above) sketch of the graph	(above) part of the graph	
The minimum value $18 + 5 = -4$ $y = -4$	is $y = 3^2 - 6(3) + 5 = 9 - 6(3) + $	$y = x^2 - 6x + 5$	where $y > 0$ i.e. $x^2 - 6x + 5 > 0$	
Sketch the curve, emphasise it where $y > 0$		hence the solution to the inequa	ality $x^2 - 6x + 5 > 0$ is $x < 1$ or $x > 5$	
Practical Example:				
In the construction o	of an oil rig, the designers	Let breadth of pad be x metres. So length of pad is $x + 10$ metres.		
helicopter landing pa	ad.	Area of pad is x (x + 10) and area has to be between 375 m^2 and 600 m^2		
(i) length to be 10m	n more than breadth	So we have the inequality: 37	$\frac{1}{5} < x(x+10) < 600$	
(ii) area of pad to lie	e between 375m ² and 600m ²	Sketch the graph of $y = x(x + 1)$ We know that this graph crosse	10)	
Calculate the limits f	for the breadth of the pad.	we know that this graph crosse	We need to find the values of x that correspond	
See method of work	king opposite:		to $y = 600$ and $y = 375$ which will give us the limits for the breadth	
Summary:			i.e. $v = 375$ and $v = x(x + 10) \implies v = x^2 + 10x$	
• Form an ine	equality		So solve $x^2 + 10x - 375 = 0$	
• Sketch the g	graph using '=' signs		(x + 25)(x - 15) = 0	
Which part	of graph is required	-10	so $x = -25$ or $x = 15$ (discard negative value)	
• Interpret the	e result	Now we need to color as 600	$r = r^2 + 10r$	
		Now we need to solve $y = 600$ i.e. solve $x^2 \pm 10x = 600 = 0$	and $y = x + 10x$	
In summary with inequalities – sketch the curve and isolate the part that is relevant.		(x+30)(x-20) = 0	0 so $x = -30$ (discard) or $x = 20$	
		so at $x = 20m$ the area will be	600 m^2 and at x = 15 area will be 375 m ²	
		hence 15 metres < breadth < 20 metres.		
		- 5 -		

Unit 2 - 2 Integration	
Differential Equations	
An equation involving a derivative such as	
$\frac{dy}{dx} = 8x$	
To solve this, we 'undo' the differentiation.	What we have done is to 'un-differentiate' and get back to the original
This takes us back to $y = 4x^2 + constant$,	runction.
which we write as $y = 4x^2 + c$	$y = 4x^2 + c$ is called the anti-derivative of 8x
since any constant will differentiate to 0.	
General Solution	
The general solution to $\frac{dy}{dx} = 8x$ is: $y = 4x^2 + c$	
which represents a family of parabolas.	
Particular Solution	
To narrow it down to a particular parabola, we need more information (a boundary condition) such as when $x = 1$, $y = 6$.	General solution: $y = 4x^2 + c$ But when $x = 1$, $y = 6$ so substitute to give: $6 = 4 + c$ So $c = 2$
On substitution this gives us a value for c.	Particular Solution is: $y = 4x^2 + 2$
Now we have the Particular Solution.	
Example: Find the particular solution of the differential equation $\frac{dy}{dx} = 8x - 1$ given by $y = 5$ when $x = 1$	The general solution is: $y = 4x^2 - x + c$ when $y = 5$, $x = 1$ so $5 = 4(1)^2 - (1) + c$ thus $c = 2$ The particular solution is: $y = 4x^2 - x + 2$
Example:	dy 5.10
Kate and Mike make a simultaneous parachute jump.	If: $v = \frac{1}{dx} = 5 + 10x$ then $y = 5x + 5x^2 + c$ (this is the general solution)
Their velocity after x seconds is $v = 5 + 10x$ m/s	Since we know that $y = 0$ when $x = 0$ then $c = 0$ (substitute in general soln)
If they have fallen y metres then $v = \frac{dy}{dx} = 5 + 10x$	So the distance fallen in x seconds is given by: the Destington solution: $x = 5x + 5x^2$
a) Find the distance y metres, they fall in x seconds, given $y = 0$ when $x = 0$	Hence the distance fallen in 10 seconds is given by:
b) Calculate the distance they fall in 10 seconds.	$y = 5(10) + 5(10)^2$ = 550 metres.
Leibnitz' notation	
Leibnitz invented a useful notation for anti- derivatives:	The anti-derivative is called the integral and c is the constant of integration. F(x) is obtained from $f(x)$ by integrating with respect to x
$\int 8x dx = 4x^2 + c$	$\int f(x) dx$
In general $\int f(x) dx = F(x) + c$ which means	Leibnitz notation is J J (VV) Curv
effectively that $F'(x) = f(x)$	The integral sign and the 'dx' cannot be separated – they are a pair,
The process of calculating the ant-derivative is known as Integration.	inke a set of brackets.

Unit 2 - 2 Integration	
Some useful rules	
$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad n \neq -1$	INCREASE the index by 1, then divide by the new index. (note opposite of differentiation – which was multiply by the index, then DECREASE the index by 1)
$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x)$ $\int k f(x) dx = k \int f(x) dx$	<i>ax</i> Integral of a sum is the sum of the integrals. A constant multiplier is carried along.
Examples: See opposite	Examples: $\int x^3 dx = \frac{x^4}{x^4} + c$
Treat each term separately and do not forget the constant of integration.	$\int 6x^2 dx = \frac{6x^3}{3} + c = 2x^3 + c$
	$\int x^{2} + x dx = \frac{x^{3}}{3} + \frac{x^{2}}{2} + c$ $\int 3x^{2} - 4 dx = \frac{3x^{3}}{3} - 4x + c = x^{3} - 4x + c$
	$\int 3x^{-4} dx - \frac{3}{3} - 4x + c - x - 4x + c$
Working with Gradients Given that the gradient of the curve $y = f(x)$ is	Working: Integrate giving $y = \int 3x^2 - 6x + 1 dx$ so
$\frac{dy}{dx} = 3x^2 - 6x + 1$ and the point (3, 4) lies	on $y = \frac{3x^3}{3} - \frac{6x^2}{2} + x + c = x^3 - 3x^2 + x + c$
(See opposite for solution).	Now substitute the condition for the particular solution $x = 3$ and $y = 4$ to obtain c
	$4 = 3^{3} - 3(3)^{2} + 3 + c$ so $4 = 9 - 27 + 3 + c$ $4 = -15 + c$ $c = 19$
	Hence particular solution is : $y = x^3 - 3x^2 + x + 19$
Fractional and Negative Indices Note that in order to integrate, you must have t function in straight line index form. Example:	ne
Integrate: $2 - \frac{1}{x^2} \Rightarrow$	$\int 2 - x^{-2} dx \implies 2x - \frac{x^{-1}}{-1} + c \implies 2x + \frac{1}{x} + c$
Integrate: $x - \frac{1}{\sqrt{x}} \Rightarrow$	$\int x - x^{-\frac{1}{2}} dx \implies \frac{x^2}{2} - \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c \implies \frac{1}{2}x^2 - 2\sqrt{x} + c$
Integrate: $\left(u - \frac{1}{u}\right)^2 \Rightarrow$	$\int u^{2} - 2 + \frac{1}{u^{2}} du \Rightarrow \int u^{2} - 2 + u^{-2} du \Rightarrow \frac{u^{3}}{3} - 2u + \frac{u^{-1}}{-1} + c$ $\Rightarrow \frac{1}{2}u^{3} - 2u - \frac{1}{2} + c$
	$-\frac{3}{3}u - 2u - \frac{3}{4}v - \frac{3}{4}u - 3$

Unit 2 - 2 Integration	
Example:	
Integrate: $\frac{v^3 + v}{v} \Rightarrow$	$\int \frac{v^3}{v} + \frac{v}{v} dv \implies \int v^2 + 1 dv \implies \frac{v^3}{3} + v + c \implies \frac{1}{3}v^3 + v + c$
Applications :The rate of growth per month (t) of the population P(t) of Carlos Town is given by the differential equation $\frac{dP}{dt} = 5 + 8t^{\frac{1}{3}}$ a) Find the general solution of this equation b) Find the particular solution given that at present (t = 0), P = 5000c) What will the population be 8 months from now ?	General solution given by: $\int 5 + 8t^{\frac{1}{3}} dt = 5t + \frac{8t^{\frac{4}{3}}}{\frac{4}{3}} + c, so P = 5t + 6t^{\frac{4}{3}} + c$ To find c, put P=5000 and t = 0 so c = 5000 Hence $P = 5t + 6t^{\frac{4}{3}} + 5000$ 8 months from now, substitute t = 8 into the equation $P = 5(8) + 6(8)^{\frac{4}{3}} + 5000$ To deal with the $8^{\frac{4}{3}}$ recall that with fractional indices, the denominator specifies the root and the numerator the power. So, $8^{\frac{4}{3}} \Rightarrow (\sqrt[3]{8})^4 \Rightarrow 2^4 \Rightarrow 16$ Hence the population after 8 months = 40 + 96 + 5000 = 5136
The area under a curve You have calculated many areas bounded by straight lines, including rectangles, triangles and parallelograms.	y y y y x For example the shaded area shown is: $\frac{1}{2}b^2 - \frac{1}{2}a^2$ o a b x (by considering the two squares of side a and b)
It is not so easy to calculate the area bounded by a curve. We will work out a method for calculating the area bounded by the x-axis, the lines $x = a$ and x = b and the curve $y = f(x)$. From the diagrams and working opposite, we can see that: as $h \to 0$ $f(x) \le \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} \le f(x)$ But $\lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = A'(x)$ this is the definition of the derived function So $f(x) = A'(x)$ and so $A(x) = \int f(x) dx$ by the definition of integration.	We will take A(x) to be the area under the curve up to x and starting at a and use this to find the area of a strip under the curve, h wide. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Unit 2 - 2	Integration	
Area under a cur	ve – some notation	Example : show by shading in sketches, the areas associated with:
The area we wish to calculate, bounded by the x-axis, the lines $x = a$ and $x = b$ and the curve $y = f(x)$ is denoted by:		$\int_{1}^{4} 2x dx$
$\int_{a}^{b} f(x) dx \text{we}$ - read it as "the integ	call this a definite integral gral from a to b of $f(x) dx$	$\int_{-2}^{2} x^3 dx \qquad \xrightarrow{-2} \mathbf{o} \xrightarrow{\mathbf{z} \times \mathbf{x}^3}$
In one sense, this integral represents the summing of all the strips of area under the curve from $x = a$ to $x = b$, and in fact, \int is an elongated form of the letter S.		$\int_{0}^{\frac{\pi}{2}} \sin x dx$ $y = \sin x$ $\pi = 2\pi$ x
The Area under a c definite integrals The area under the c to $x = b$ is $\int_{a}^{b} f(x) dx = [F(x)]$ $\int_{a}^{b} f(x) dx$ is a definite limit a and upper limit	EVALUATE: [a, a] = F(b) - F(a) inite integral with lower hit b.	y = f(x) $A(x) is the area under the curve, starting at x = a$ $A(b) is the area under the curve, starting at x = a$ $A(b) is the area under the curve from x = a to x = b,$ which is the area we wish to find. From the last section $A(x) = \int f(x) dx$ Let $\int f(x) dx = F(x) + c$ where $F'(x) = f(x)$ Then $A(x) = F(x) + c$ and $A(a) = 0$ (from the diagram) $\Rightarrow 0 = F(a) + c$ so $c = -F(a)$ Now $A(x) = F(x) - F(a)$ So $A(b) = F(b) - F(a)$ which is the area we are trying to find. $F(b) - F(a)$ is denoted by $[F(x)]_a^b$
Examples: Evaluate these integrals:		
$\int_{1}^{3} x^{3} dx = \left[\frac{x^{4}}{4}\right]$	$a^{3} = \frac{3^{4}}{4} - \frac{1^{4}}{4} = \frac{81}{4} - \frac{1}{4}$	$\frac{1}{4} = \frac{80}{4} = 20$

$$\int_{-1}^{2} 2x(3x+1) dx = \int 6x^2 + 2x dx = \left[2x^3 + x^2\right]_{-1}^{2} = (16+4) - (-2+1) = 20 + 1 = 21$$

Unit 2 - 3.1 C	Calculations in 2 and	3 dimensions
Reminders: Basic Trigonometry Sine Rule and Cosine Rule Area of Triangle Related Angles – sketcl quadrants to convince yo sin (180° – A) = sin A	Rule Ch them in on ASTC yourself.	SOH-CAH-TOA $\sin A = \frac{Opposite}{Hypotenuse}$ $\cos A = \frac{Adjacent}{Hypotenuse}$ $Tan A = \frac{Opposite}{Adjacent}$ Sine Rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$ $Cos A = \frac{b^2 + c^2 - a^2}{2bc}$ Area of Triangle Area of $\Delta ABC = \frac{1}{2}ab \sin C$ (the sine of an angle is the sine of its supplement - Recall ASTC)
sin (-A) = -sin A $cos (180 - A) = -cos A$ $cos (-A) = cos A$		
Proofs: Example: a) Prove that the area $\Delta PQR = \frac{1}{2}qr$ b) $p = \frac{q\sin(\alpha + \beta)}{\sin \alpha}$ Method: a) Always start from Use formula for a	rea of: r sin($\alpha + \beta$) 3) m what you know. area of a triangle.	$\mathbf{q} = \frac{\mathbf{p}}{\mathbf{p}} \mathbf{R}$ a) Area of $\Delta ABC = \frac{1}{2} ab Sin C$ So Area of $\Delta PQR = \frac{1}{2} qr Sin P$ but $P = 180^{\circ} - (\alpha + \beta)$ and $sin \{180^{\circ} - (\alpha + \beta)\} = sin (\alpha + \beta)$ hence: Area of $\Delta PQR = \frac{1}{2} qr Sin (\alpha + \beta)$ q.e.d.
b) Looks like some so start with that.	e variation on sine rule – t.	b) Applying sine rule to ΔPQR gives: $\frac{p}{\sin P} = \frac{q}{\sin Q}$ However $\angle Q = \alpha$, so substitute and then re-arrange: $\frac{p}{\sin P} = \frac{q}{\sin \alpha} \implies p = \frac{q \sin P}{\sin \alpha}$ and from part a) we showed that $\sin P = \sin (\alpha + \beta)$ So: $p = \frac{q \sin (\alpha + \beta)}{\sin \alpha}$ q.e.d.

Unit 2 - 3.1 Calculations in 2 and	3 dimensions
Example: Prove that: a) $QC = \frac{d \sin x}{\sin(y-x)}$ b) $AC = \frac{d \sin x \sin y}{\sin(y-x)}$	Solution: a) Start with sine rule: $\frac{QC}{Sin x} = \frac{d}{Sin PCQ}$ Now $\angle PQC = 180^{\circ} - y$ so $\angle PCQ = 180^{\circ} - (x + (180^{\circ} - y)) = 180 - (x + 180 - y)$ = 180 - x - 180 + y = y - x hence: $\frac{QC}{Sin x} = \frac{d}{Sin (y - x)}$ then re-arrange to give: $QC = \frac{d \sin x}{Sin (y - x)}$ q.e.d.
	b) We have QC from part a), we have angle y we are trying to find AC – this is a right angled triangle – which suggests SOH-CAH-TOA – the sine ratio. So: $\sin y = \frac{AC}{QC} \Rightarrow AC = QC \sin y$ from previous part we have $QC = \frac{d \sin x}{Sin (y - x)}$ so $AC = QC \sin y = \frac{d \sin x \sin y}{Sin (y - x)}$ q.e.d.

Rules: Always start from something you know.

Look at what you are trying to prove

- does it look familiar in any way

- does it look similar to sine rule, cosine rule, SOH-CAH-TOA, area of triangle etc.

If it does then you know where to start.

Look at Left Hand Side of what you are trying to prove.

Can you find a rule or formula linking it with something on the Right Hand Side.Use the knowledge you have to get from the LHS to the RHS by substitution.

Unit 2 - 3.1	Calculations in 2 and	3 dimensions
Three Dimensions		
We live in a 3 dimen length, breadth and h	sional world – a world of height.	
We can use the rules them to 2-dimension dimensional solid.	listed above, by applying al planes within the 3	
(i) Angle betwee	en a line and a plane.	H G
To find the angle bet ABCDuse the perper right angled triangle	ween HB and the plane ndicular HD and form a Δ HDB	F
\angle HBD is the	required angle	
Calculations may inv CAH-TOA	olve Pythagoras and SOH-	A
(ii) Angle betwee	en two planes.	HG
To find the angle bet ABCD find their line	ween planes ABGH and of intersection AB.	E
Then a line in each p in this diagram, (BC	lane perpendicular to AB, and BG).	
$\angle CBG$ is the	e required angle.	
∠ DAH wou	ld also do	ABB
Some terminology:		
Face diagonal – this e.g. AH, ED, EG, Fl	is a diagonal across a face. H etc.	
Space diagonal – the vertices which are not	is is a diagonal linking two ot in the same face.	
e.g. BH, A	G, EC, DF	
To find lengths of dia involve Pythagoras a	agonals, calculations may nd SOH-CAH-TOA.	
Co-ordinates in 2 an	nd 3 dimensions	У
To fix the position of	f a point on a plane	P(x, y)
(2 dimensions), you	e point (\mathbf{x}, \mathbf{y})	y
1 15 11	c point (x, y)	x x
To fix the position of a point in space (3 dimensions), you need 3 axes – OX, OY and OZ.		Z Q(X, y, Z)
and three co-ordinates $-x$, y and z		Z
Q is the	e point (x, y, z)	Y y
In 3 dimensions, we z direct	usually show the ion vertically.	X

Unit 2 - 3.2	Compound Angle For	mula					
Reminders:							
Related Angles: (Sketch the ASTC quadrants)							
$\sin\left(180^\circ - A\right) = \sin$	А						
(the sine of an angle is the sine of its supplement - Recall ASTC)			Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
$\sin\left(90-A\right) = \cos A$							
sin (-A) = - sin A			Degrees	30°	45°	60°	
$\cos\left(180 - A\right) = -\cos(180 - A)$	S A						
$\cos\left(90-A\right) = \sin A$			sin	1	$\frac{1}{\sqrt{2}}$	$\sqrt{3}$	
$\cos(-A) = \cos A$				2	$\sqrt{2}$	2	
Sin, cos, tan formul	ae		cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	
$\frac{\sin A}{\cos A} = \tan A$			tan	1	1	$\sqrt{3}$	
$\sin^2 A + \cos^2 A =$	1			$\sqrt{3}$			
	-						
Radians and Degree	es						
π radians = 180°							
Compound Angle formulae							
$\cos(A+B) = \cos A$	cos B – sin A sin B						
$\cos (A - B) = \cos A \cos B + \sin A \sin B$							
$\sin\left(A+B\right) = \sin A c$	$\cos B + \cos B \sin A$						
$\sin\left(A-B\right) = \sin A c$	$\cos B - \cos B \sin A$						
These formulae are true for all angles A and B whether in degrees or radians.							
Double Angle Form	ulae	Put $A = B$ in	the above fo	ormulae for	sin (A + I	B) and	$\cos(A+B)$
$\sin 2A = 2\sin A \cos A$	A	and by using $\sin^2 A + \cos^2 A = 1$ we can obtain the formula					
$\cos 2A = \cos^2 A - \sin^2 A$		for sin 2A an	d cos 2A				
$\cos 2A = 1 - 2\sin^2 A$							
$\cos 2A = 2\cos^2 A - 1$		Rather than r identities	emember al	l the variation	ons, try to r	emember the	e basic 4
By re-arranging the formulae for cos 2A above		- $sin (A + B)$, $sin (A - B)$, $cos (A + B)$, $cos (A - B)$					
we can also obtain:		and how to a	lerive the do	uble angle f	formulae by	putting A =	В.
2		then by using	$\sin^2 A +$	$\cos^2 A = 1$	1		
$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$		you can get from cos 2A to sin2 A or cos2 A					
$\sin^2 A = \frac{1}{2} \left(1 - \cos 2A \right)$		and then re-arrange to give $\cos^2 A$ and $\sin^2 A$					
These are all useful identities and are often used in proofs and calculations.							

Unit 2 - 3.2	Compound Angle Formula		
Examples: 1. Using 75° show that	$r = 30^{\circ} + 45^{\circ},$ $\cos 75 = \frac{\sqrt{3} - 1}{2\sqrt{2}}$	$\cos 75 = \cos (30+45) = \cos 30 \cos 45 - \sin 30 \sin 45$ $= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}-1}{\sqrt{2}}$	
2. Using 3A sin 3A = 3	A = 2A + A prove that: $B \sin A - 4 \sin^3 A$	$\sin 3A = \sin (2A + A) = \sin 2A \cos A + \sin A \cos 2A$ $\sin 2A = 2 \sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $\cos^2 A = 1 - \sin^2 A$ $\therefore \sin 3A = 2 \sin A \cos A \cos A + \sin A(1 - 2\sin^2 A)$ $\therefore \sin 3A = 2 \sin A(1 - \sin^2 A) + \sin A(1 - 2\sin^2 A)$ $\therefore \sin 3A = 2 \sin A - 2\sin^3 A + \sin A - 2\sin^3 A$ $\therefore \sin 3A = 3 \sin A - 4\sin^3 A$	
Example 3. Express $\cos^4 x$ in the form $a + b \cos x + c \cos 4x$ (Hint: start with $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$)		$\cos^{2} x = \frac{1}{2} (1 + \cos 2x)$ $\cos^{4} x = \frac{1}{2} (1 + \cos 2x) \cdot \frac{1}{2} (1 + \cos 2x)$ $\cos^{4} x = \frac{1}{4} (1 + 2\cos 2x + \cos^{2} 2x)$ $\cos^{4} x = \cos(2x + 2x) = \cos^{2} 2x - \sin^{2} 2x$ $\sin^{2} 2x = 1 - \cos^{2} 2x$ $\cos 4x = \cos^{2} 2x - 1 + \cos^{2} 2x$ $\cos 4x + 1 = 2\cos^{2} 2x$ $\frac{1}{2} (\cos 4x + 1) = \cos^{2} 2x$ $\cos^{4} x = \frac{1}{4} (1 + 2\cos 2x + \frac{1}{2}(\cos 4x + 1))$ $\cos^{4} x = \frac{1}{4} (1 + 2\cos 2x + \frac{1}{2}\cos 4x + \frac{1}{2})$ $\cos^{4} x = \frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x + \frac{1}{8}$ $\cos^{4} x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$	
Solving Trigonomet Example 4: Solve $\cos 2x + \cos x$ for $0 \le x \le 360^\circ$ Hence solutions are $x = 90^\circ$, 120°, 240	tric Equations x + 1 = 0 :: 0°, 270°	$\cos 2x + \cos x + 1 = 0$ $\cos^{2} x - \sin^{2} x + \cos x + 1 = 0$ $\cos^{2} x - (1 - \cos^{2} x) + \cos x + 1 = 0$ $\cos^{2} x - 1 + \cos^{2} x + \cos x + 1 = 0$ $2\cos^{2} x + \cos x = 0$ $\cos x(2\cos x + 1) = 0$ $\cos x = 0 or \cos x = -\frac{1}{2}$ $x = 90^{\circ} or 270^{\circ} or acute x = 60^{\circ} so \ x = 120^{\circ} or \ 240^{\circ}$	

Unit 2 - 3.2	Compound Angle For	ormula		
Example 5: Solve $\sin 2\theta + \cos \theta = 0$ for $0 \le x \le 2\pi$ Hence solutions are: $\theta = \frac{\pi}{2}, \ \frac{7\pi}{6}, \ \frac{3\pi}{2}, \frac{11\pi}{6}$		$\sin 2\theta + \cos \theta = 0$ $2\sin \theta \cos \theta + \cos \theta = 0$ $\cos \theta (2\sin \theta + 1) = 0$ $\cos \theta = 0 \text{or} \sin \theta = -\frac{1}{2}$ $\theta = \frac{\pi}{2}, \frac{3\pi}{2} \text{or} \text{acute } \theta = \frac{\pi}{6} \text{so } \theta = \pi + \frac{\pi}{6} \text{or } 2\pi - \frac{\pi}{6}$		
Example 6: Solve correct to 1 de 5 cos 2θ - cos θ + 2 =	ecimal place for $0 \le \theta \le 2\pi$ = 0	$5\cos 2\theta - \cos \theta + 2 = 0$ $5(\cos^2 \theta - \sin^2 \theta) - \cos \theta + 2 = 0$ $5(\cos^2 \theta - (1 - \cos^2 \theta)) - \cos \theta + 2 = 0$ $5(2\cos^2 \theta - 1) - \cos \theta + 2 = 0$		
Hence solutions are: $\theta = 0.9, 5.4$ or 2.1 or 4.2 radians. Re-arranged in order of size: $\theta = 0.9, 2.1, 4.2$ or 5.4 radians		$10\cos^{2}\theta - 5 - \cos\theta + 2 = 0$ $10\cos^{2}\theta - \cos\theta - 3 = 0$ $(5\cos\theta - 3)(2\cos\theta + 1) = 0$ $so \ \cos\theta = \frac{3}{5} or \cos\theta = -\frac{1}{2}$ $acute \ \theta = 0.927 \ rad or acute \ \theta = \frac{\pi}{3} \ rad$ $hence \ \theta = 0.927 \ or \ 2\pi - 0.927 or \theta = \pi - \frac{\pi}{3} \ or \ \pi + \frac{\pi}{3} \ rad$		
Summary of meth Use double angle for $\sin 2x$ or $\cos 2x$ Use $\sin^2 A + \cos^2 x$ to switch from $\cos^2 x$ You will generally g in $\cos x$ or $\sin x$ or a Factorise: i) common fac ii) two bracket Make sure you get A	hods rmula to expand: A = 1 x to $\sin^2 x$ or vice versa et a quadratic mixture. ctor s LL the roots.			

Unit 2 - 3.2	Compound Angle For	rmula	
Graphs with equations Recall sketching graphs of trigonometric functions $\mathbf{y} = \mathbf{a} \sin n\mathbf{x} \mathbf{y} = \mathbf{a} \cos n\mathbf{x}$ $\mathbf{a} = \text{the amplitude}$ $\mathbf{n} = \text{the number of cycles in 360° or } 2\pi \text{ radians}$ the period of the function is: $\frac{360}{n} \text{ or } \frac{2\pi}{n}$			
y = a the sine function is s y = a the cosine function is equivalent statement working in radians.	a sin $(x + b)$ hifted b° to the left a cos $(x - b)$ s shifted b° to the right as can be made when		
Graphs of: $y = \sin x$ and $y = \cos x$	s x moved $\frac{\pi}{4}$ to right.	$y = \sin \left(x - \frac{\pi}{4}\right)$	$y = \cos \left(x - \frac{\pi}{4}\right)$ $1 - \frac{\pi}{4}$ $-1 - \frac{\pi}{4}$
Graphs of: $y = \sin x$ and $y = \cos x$	os x moved $\frac{\pi}{4}$ to left.	$y = \sin \left(x + \frac{\pi}{4}\right)$	$y = \cos \left(x + \frac{\pi}{4}\right)$

Unit 2 - 4	The Circle		
The circle – centre $O(0, 0)$ and radius r			
$\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{r}^2$			
The equation of a circle is given by the locus of Point P			
which describes a path at a constant distance r from the origin.			
We need to find a relationship between x and y that satisfies this condition.			
By Pythagoras: x^2	$+ y^2 = r^2$		
Hence the equation of	of the circle is:		
$x^2 + y^2 = 1$	r^2		
Application:			
Given the equation of	of a circle in the form	Example : the radius of the circle: $x^2 + y^2 = 64$ is $r = 8$	
$x^2 + y^2 = r^2$		Example : the radius of the circle: $3x^2 + 3y^2 = 48$	
we can write down the	he radius.	first divide by 3 to get the form $x^2 + y^2 = r^2$	
		$x^2 + y^2 = 16$ so r = 4	
Application:		Example:	
If we know that the circle is centred on the origin and passes through a given point, we can find its equation:		Find the equation of the circle centre O passing through P(3, 4) using the distance formula, we can calculate OP as 5 This is the radius of the circle. Hence $x^2 + y^2 = 25$	
Application		Example: Does the point $P(12, 9)$ lie on the circle $x^2 + y^2 - 225$	
We can check that a	point lies on a circle – if it	LHS RHS	
does then it will satis	sfy the equation of the	$x^2 + y^2$ 225	
circle:		144 + 81	
		225	
		so R lies on the circle.	
		Alternative method:	
		If the point $R(12, -9)$ lies on the circle, then OR will be equal to the radius of the circle (which is 15).	
		Using the distance formula we find that $OR = 15$, so R lies on the circle.	
Example: Find p if $(p, 3)$ lies on the size $x^2 + x^2 = 12$		Example: Does the point $O(7 - 4)$ lie on the circle $x^2 + x^2 = 64$	
$\begin{bmatrix} 1 & \text{in } p \text{ in } (p, 3) \text{ nes on the circle } x + y = 13 \end{bmatrix}$		Does the point $Q(7, -4)$ he on the circle $x + y = 04$	
(p, 3) must satisfy the equation of the circle, so:		The distance OQ (by the distance formula = $\sqrt{65}$) This is larger than the radius of the circle,	
$p^2 + 3^2 = 13 \implies p^2 = 13 - 9 \implies p^2 = 4$		so Q does NOT lie on the circle	
so $p = \pm 2$			

Unit 2 - 4

The Circle

The circle centre C (a, b) and radius r

$$(x-a)^2 + (y-b)^2 = r^2$$

The equation of this circle is given by the locus of Point P which describes a path at a constant distance r from the centre, C(a, b)

We need to find a relationship between x and y that satisfies this condition.

By Pythagoras: $(x - a)^{2} + (y - b)^{2} = r^{2}$

Hence the equation of the circle is:

$$(x - a)^{2} + (y - b)^{2} = r^{2}$$

Applications:

Application:

their radii.

the sum of their radii.

diameter of the circle.

Given the equation of a circle in the form

$$(x - a)^{2} + (y - b)^{2} = r^{2}$$

we can write down the co-ordinates of the centre of the circle and its radius.

If two circles touch, then we know that the

We can find the equation of a circle which

passes through two points which form the

You can immediately see that mid-point must be M(-1, 1) and length is clearly 6

Unit 2 - 4

Hence: A is (-7, -1) and B is (3, -1) and radii of both circles are the same (= AB) which is the diameter of circle at C

С

R

radii of Circle A and circle B is 10

Equation of circle centre A is: $(x + 7)^2 + (y + 1)^2 = 100$ Equation of circle centre B is: $(x - 3)^2 + (y + 1)^2 = 100$

Unit 2 - 4	The Circle	
The general equation of a circle: $x^2 + y^2 + 2gx + 2fy + c = 0$ with centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided that $g^2 + f^2 - c > 0$ Note that the coefficients of x^2 and y^2 must be 1. Strategies: Given a circle in this form – we can find the centre and radius We can then continue using strategies stated previously.		The equation: $(x - 4)^2 + (y + 3)^2 = 4$ represents a circle with centre (4, -3) and radius 2 Multiplying out we get: $x^2 - 8x + 16 + y^2 + 6y + 9 = 4$ Re-arranging we get: $x^2 + y^2 - 8x + 6y + 21 = 0$ and this represents the same circle. Can we show that: $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle ? Re-arranging we get: $x^2 + 2gx + y^2 + 2fy = -c$ Now complete the square $(x + g)^2 - g^2 + (y + f)^2 - f^2 = -c$ thus: $(x + g)^2 + (y + f)^2 = g^2 + f^2 - c$ we may choose to write this as: $(x - (-g))^2 + (y - (-f))^2 = g^2 + f^2 - c$ and note that this represents a circle: with centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$ provided that $g^2 + f^2 - c > 0$
Example: Show that the equation: $3x^2 + 3y^2 - 12x + 24y - 36 = 0$ and find its centre and radius.		Divide throughout by 3 \Rightarrow $x^2 + y^2 - 4x + 8y - 12 = 0$ Compare with standard equation $x^2 + y^2 + 2gx + 2fy + c = 0$ this gives us: $2g = -4$ so $g = -2$ and $2f = 8$ so $f = 4$ and $c = -12$ Condition for a circle is: $g^2 + f^2 - c > 0$ and the coefficients x^2 and y^2 are equal to 1 $(-2)^2 + 4^2 - (-12) = 4 + 16 + 12 = 32$ which is > 0 so it is the equation of a circle. The radius of the circle is $\sqrt{g^2 + f^2 - c}$ so $\mathbf{r} = \sqrt{32}$ (or $4\sqrt{2}$) Centre is : $(-g, -f)$ which gives Centre = $(2, -4)$
Example: Find the equation of the circle through $(-1, -1)$, $(1, 3)$ and $(0, 6)$ A sketch is useful to apply labels. Join PQ and QR. Let mid-point of PQ be M and mid-point QR be N Draw perpendiculars from M and N. Where they meet at C is the centre of the circle. P(0, 6) R(-1, -1)		Mid-point PQ is M($\frac{1}{2}$, $\frac{4\frac{1}{2}}{2}$) Gradient PQ is -3 Gradient MC = $\frac{1}{3}$ Equation of MC is: $\frac{y-4\frac{1}{2}}{x-\frac{1}{2}} = \frac{1}{3} \implies 3y - \frac{27}{2} = x - \frac{1}{2}$ Re-arranging $\implies 3y - x - 13 = 0$ (1) {Equation MC} Repeat for NC Mid-point QR is N(0, 1) Gradient QR is 2 Gradient MC = $-\frac{1}{2}$ Equation of NC is: $\frac{y-1}{x-0} = -\frac{1}{2} \implies 2y-2+x=0$ Re-arranging gives: $2y + x - 2 = 0$ (2) {Equation NC} Solving (1) and (2) simultaneously we get: $x = -4$, $y = 3$ Hence centre of equation is C(-4, 3) To find radius: find distance RC (or CQ or CP) Using distance formula gives RC = 5 Hence equation of circle is: $(x + 4)^2 + (y - 3)^2 = 25$ or: $x^2 + 8x + 16 + y^2 - 6y + 9 = 25 \implies x^2 + y^2 + 8x - 6y = 0$

Unit 2 - 4	The Circle		
 Example: a) Find the centres and radii of the circles: x² + y² = 4 and x² + y² - 8x + 6y + 24 = 0 b) Sketch the circles and calculate the shortest distance between their circumferences. 		$x^{2} + y^{2} = 4$ Centre (0, 0) and radius = 2 $x^{2} + y^{2} - 8x + 6y + 24 = 0$ 2g = -8 so -g = 4 2f = 6 so -f = -3 radius = $\sqrt{g^{2} + f^{2} - c}$ so radius = $\sqrt{(16 + 9 - 24)} = 1$ Hence Centre (4, -3) and radius 1 sketch	
		The shortest distance between the circumferences will be along the line joining their centres. Distance AB = 5 (distance formula) Radius circle A = 2, radius circle B = 1 So distance between circumferences = $5 - 1 - 2 = 2$ Distance between circumferences = 2 the circles:	
 Tangents to a circle To find the tangent t P(x, y) Find the centre of 	e o a circle at a given point of the circle	Example: Find the equation of the tangent to the circle $x^{2} + y^{2} - 4x + 6y - 12 = 0$ at the point P(5, 1)	
 Find the gradient of the radius line from the centre to point P The tangent is perpendicular to the radius Find the gradient of the tangent Now find the equation of the tangent through point P Gradient of tangent Hence equation 	Solution: The centre C is (2, -3) { using centre at (-g, -f) } Gradient PC = $\frac{1-(-3)}{5-2} \Rightarrow \frac{4}{3}$ Gradient of tangent = $-\frac{3}{4}$ Hence equation of tangent is: $y - 1 = -\frac{3}{4}(x - 5)$		
		$\Rightarrow 4y - 4 = -3x + 15$ Simplifying to : Equation of tangent is: $4y + 3x = 19$	

Unit 2 - 4 The Circle	
Unit 2 - 4The CircleIntersection of lines and circlesUse simultaneous equations to find the point of intersection.Generally you will get two points of intersection.Where the line enters and exits the circle,tangencyunless the line is a tangent to the circle, in which case there will only be one point of intersection.	Example:Find the co-ordinates of the points of intersection ofthe line $5y - x + 7 = 0$ and the circle $x^2 + y^2 + 2x - 2y - 11 = 0$ Solution:The lines meet when $5y - x + 7 = 0$ (1)and $x^2 + y^2 + 2x - 2y - 11 = 0$ (2)all we have to do is solve the equations simultaneously
avoids the circle or if the line misses the circle altogether, in which case there will be no points of intersection.	Re-arrange (1) to give $x = 5y + 7$ and substitute into (2) $\Rightarrow (5y + 7)^2 + y^2 + 2(5y + 7) - 2y - 11 = 0$ $\Rightarrow 25y^2 + 70y + 49 + y^2 + 10y + 14 - 2y - 11 = 0$ $\Rightarrow 26y^2 + 78y + 52 = 0$ (simplify by dividing by 26) $\Rightarrow y^2 + 3y + 2 = 0$ $\Rightarrow (y + 2)(y + 1) = 0$ hence $y = -2$ or $y = -1$ when $y = -2$, $x = -3$ and when $y = -1$, $x = 2$ So the points of intersection are: (-3, -2) and (2, -1)
Use of discriminantWe can also use the discriminant to give us information about the intersection of a line and a circle.For example, by considering the quadratic equation which results from a simultaneous equation solutionWe can deduce that:Line meets the circlein two distinct pointsb ² - 4ac > 0real and distinct rootsat one point only (tangent)b ² - 4ac = 0equal rootsat no pointb ² - 4ac < 0	Example: Find the values of k for $y = x + k$ to be a tangent to the circle $x^2 + y^2 = 8$ Solution: The line and circle intersect where $x^2 + (x + k)^2 = 8$ (quadratic equation from simultaneous substitution) i.e. $x^2 + x^2 + 2kx + k^2 = 8$ $\Rightarrow 2x^2 + 2kx + k^2 - 8 = 0$ for a tangent we require only one solution i.e. equal roots so $b^2 - 4ac = 0$ $\Rightarrow 4k^2 - 4(2)(k^2 - 8) = 0$ $\Rightarrow -4k^2 - 64 = 0$ (divide throughout by 4) $\Rightarrow -k^2 - 16 = 0 \Rightarrow k^2 = 16$ Hence $k = \pm 4$ (giving tangents $y = x \pm 4$)